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INTRODUCTION

- AR

This "Scmi-Annual” Technical Report covers research carried out by the Advanced Teleprocess-
ing Systems Group at UCLA under ARPA Contract No. MDA903-77-C-0272 covering the period July
1, 1978 through September 30, 1979. Under this contract we have two designated tasks as follows:

Task 1: Radio Packet Switching Systems

Advanced studies regarding the fundamental analytic and design considerations for random
multiple-access radio packet switching systems. We will investigate the basic performance
measures including capacity, stability, control, routing, and the tradeoffs among these quantities
for ground and satellite packet radio systems.

AT IO OAE PR 0 A N e

Task 2: Advanced Research in Distributed Communications

Advar-ed studies in internetting, flow control, distributed access, fundamental capacity
definitions and contours, and investigation of the underlying cost-performance behavior.

AR RTINS GRS

We have made significant progress in the two named tasks. In the following paragraphs we i
describe the progress and give pointers to those references which represent the published work resulting {
from this supported research. '

g e T T T T T e
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Fo'lowing this short summary is a list of publications produced as a result of the recent research
on this contract covering the period being teported upon. This list contains only those articles and
reports which in fact did appear in the published literature during this period. Papers which have been
accepted, but not yet published or which have been submitted (of which there are many in both
categories) are not listed here, but will be listed in future semi-annual technical reports as they appear
in the published literature. (Thus, the list of references here has no overlap with previous lists in our
Semi-Annual Technical Reports.) We devote the main body of this report to the detailed presentation
of one aspect of this overall research, and we simply mention the other areas briefly in the following
paragraphs of this summary.

[ PO T G AR I T

The research reported in the main body of this document discusses the performance tradeoffs
and hierarchical design of distributed packet switching communication networks. Basically it consists of '
the Ph.D. work conducted by Gideon Y. Akavia under the supervision of Professor Leonard Kleinrock i
(Principal Investigator for this research). The body of this report is presented in the form of three
separate papers which collectively summarize most of the work conducted by Dr. Akavia in his
research. In the first paper, "On a Self Adjusting Capability of ALOHA Networks,” we study a distri-
buted communication network in which many distributed terminals are attempting to communicate with
each other over a common radio channe!l. We analytically solve for the optimal range at which these
terminals should communicate, trading off the desire to reach one’s destination within a few hops !
versus the increased interference which comes when range is increased. Indeed, we find that the i
optimal solution manifests an important self adjusting capability of ALOHA networks. In the second :
paper, "Hierarchical Use of Dedicated Channels,” we again consider what is an efficient organization for
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communication among a collection of distributed terminals. We consider two technologies, namely,
line and broadcast technologies. We study the way in which system cost grows with the dimensionality
of the space and with the number of terminals involved for both of these technologies. We find that
there are great gains to be had with hierarchical designs and demonstrate these gains analytically. In the
third paper, "On the Advantage of Mixing ALOHA and Dedicated Channels,” we study a two-level net-
work in which ALOHA is used at the bottom level (where the traffic is light and very bursty and there-
fore contention schemes such as ALOHA are efficient), and using dedicated channels at the top level
(where the traffic is relatively steady yielding efficient performance of dedicated schemes). We find that
the performance of such a system is extremely good and report upon the results analytically.

Turning now to the list of references, we comment that paper number one represents the
results of some of our earlier work on the Atlantic Packet Satellite Experiment. In this paper we
describe the measured performance of a variety of packet satellite access schemes. Paper number two
represents an invited paper in which general principles and lessons gained through our experience in the
ARPA network are delineated. The third paper gives a very nice algebraic formulation for evaluating
the performance of inter-connected packet networks; we find that series, parallel, and series-parallel
networks can be evaluated using this algebra. The fourth paper presents a very important result
describing the optimum transmission range for packet radio networks when one accounts for a finite
density of terminals; we find that the optimum number of neighbors which should hear a given
transmission is approximately six, under the assumptions of our model. (In particular, the object is to
maximize throughput whereas Akavia’'s model covered both delay and throughput, thereby yielding
different solutions.) The fifth paper represents the Master’s thesis of Mart Molle and evaluates the use
of intelligent satellites with memory; the tradeoff here is the correct number of up-links using ALOHA
per given down-link using a dedicated access mode. Paper six represents a summary of a variety of
resource-sharing ideas in distributed environments. The seventh paper describes the results of a search
for the optimal traffic matrix in a given packet radio environment, a variety of interesting results
emerge from this which represent in some sense the limiting capacity of an ALOHA packet radio net-
work. Paper number eight continues the work related to the Urn scheme whick was previously
reported upon; it gives a general formulation for optimal access control. Paper number nine presents a
rather important measure, namely power, for evaluating the performance of computer communications
systems; it is there shown that deterministic rules are in many cases adequate for locating the correct
operating point for networks. Paper number ten compares circuit and packet switching; it is shown
under what conditions each of these two systems is preferable to the other. The eleventh paper
describes a mixed access scheme for packet radio channels which is a significant improvement over
ALOHA. The tweifth paper introdnuces a new switching scheme for computer networks which takes
advantage of the good properties of both circuit switching and packet switching. The thirteenth paper
represents the Ph.D. dissertation of Yechiam Yemini. The research reported upon in these published
articles is continuing and we ar2 currently investigating new areas as well,

The main report on distributed communication systems is given following this list of publica-
tions.
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Abstract

We consider a disiributed communication system with many terminals wishing to communicate
with each other. When the terminals are distributed in space we must face the following questions:
What scheme can control the access to the ccmmunicatior resources in an effective way? What
tradeoffs are basic to the design of such a communicatior system? What is the rolc of hierarchies in
organizing large communication nets? How should a large network be decomposed into smaller parts?
What cost versus performance gains can be schievesi by such a decomposition?

In attacking these questions we consider two technologies - line and broadcast - and two kinds
of systems - centralized systems, in which my;ssages originate in the distributed terminals bui are directed
to one comnon destination, and nerworks, in which both sources and destinations of messages are
distributed. ‘

We assume that the traffic to be carried and the necessary performance are specified and that
the goa! is to minimize the necessary cost. We define quality and burstiness and find the following:
Dedicating channcis is reasonablc when the traffic is steady (i.e., not bursty), but when the traffic is
bursty the cost of simple dedicated-channel systems grows too fast with the number of terminals.
ALOHA is good when the traflic is bursty, but bad when the triffic is steady. Neither ALOHA nor
dedicated channels are good when the traffic is of medium burstiness.

When given a broadcast channei, choosing the transmission range invclves the following
tradeofl: A long range enables messeges to reach their destinations in a few hops, but increases the
amount of traffic competing for the channel at every point.

In the first paper we calculate optimal transmission range. When choosing this optimai range,
ALOHA networks gain a seif adjusting capability, which makes heavily loaded ALOHA networks far
better than centralized ALOHA systems. It is therefore harder to improve ALOHA networks than
ALOHA r: _iralized systems; power groups lead to a smaller relative improvement, while a hierarchy of
ALOHA levels, with only a small population conter.ding at the top level, can improve centralized
systems but does not improve networks.

Ir: the second paper we show that by introduciag regular hierarchical structures the cost of
bursty systems can be significantly reduced, and that the optimal structure must be balanced. In line
systems the imprcvement foliows from shortening individual lines, while in broadcast systems the
iraprove..ieni follows from spatial reuse.

The cost of the best hursty line system grows with the dimeasionality of the space in which
terminals are distributed. The cost of the best bursty broadcast system is similar to the cost of one-
dimensional line sysiems and is independent of dimensionaiity. It foliows that bursty broadcast systems
have an advantage over line systems in two or more dimensions.
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Organizing & two-dimensicnal network imposes a tessalation on the p'ane. When using the best
number of levels, as a function of burstiness, tessalating the plane with hexsgonal tiles (and forming a
triangular network of comtnunication lines) is usuaily optimal.

In the third paper we show that mixed-mode systems, using ALOHA in a bottom level and
dedicated channels in a top level, can be very good for medium burstiness since they can trade the

b : amount of interference in the random access level against the number of dedicated channely in the top
' ’ levei. By choosing the right mix, such networks can becorme insensitive to the limitations of both
! access schemes,
l{
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On a Self Adjusting Capability of ALOHA Networks

-

1 Abstract

o 45
-

We consider a distributed communication network with many terminals which are distributed in
space and wishing to communicate with each other using a common radio channel. Choosing
the transmission range in such a network involves the following tradeoff: a long range enables
messages 10 reach their destinations in a few hops, but increases the amount of traffic competing
for the channel at every point.

With the help of a simple model we analyze this tradeoff for ALOHA networks, and give e
optimal range. When choosing this optimal range, as a function of specified traffic and delay
parameters, ALOHA networks demonstrate an important self adjusting capability. This capabil-
ity to adjust to traffic makes heavily loadeu ALOHA neiworks far better than centralized ALOHA
systems (in which all messages must reach one common destination).

g

Dividing a terminu: population into power groups can improve any ALOHA syst=m, especially
when the traffic is split between groups in an appropriate way, which we demonstrate. But since
ALOHA networks are hurt by destructive interference less than centralized ALOHA systems it
is harder to improve them. Using power groups can significantly improve centralized systems,
but will lead to a smaller relative improvement in ALOHA networks.

Decomposing the system into a hisrarchy of ALOHA levels, with only a small population con-
L6 tending at the top level, can improve centralized systems but does not improve networks.

1. Introduction

Consider a large number of terminals, physically distributed over a large geographic region, If

H all terminals wish to communicate with one destination we shall call the system centralized and the com- ;
¥ mon destination the station. Assuming the communication resource available is a radio channel of a 1
z given bandwidth, how should this common channel be shared among the terminals? i
i If the terminals were co-located in the same place, the best way to use the channel is to form a
} queue of busy terminals (i.e., thosc having anything to transmit) and to let them use the full bandwidth
f available one after the other. Forming one queue is much better than giving each terininal a fraction of
3 the bandwidth, and letting each terminal queue its own messages [1]. §
, : It is no trivial matter to have all terminals form one queue when the terminals are numerous
? 4 ardJ distributed over large distances. Of special interest, then, is the ALOHA approach, which invests
' ! 10 resources in coordination and control of terminals. When using the (unslotted) ALOHA scheme
; ! each terminal transmits whenever it has 8 message ready. If more than one terminal is transmitting at g
i ? the same time a conflict will occur in the use of the radio channei. and we shall assume at first that all 1
? P messages involved in such a collision will t: destroyed. When the destruction of its message beconies ‘
i ' known to the terminal it will, after a somewhat randoinized delay, retransmit the message. We shall :
: i : . not soecify how ihe failure of its messagc becomes known to thc terminal, but assume that this
- .0 - knowledge is free. i
A . i
h. /“L N ’.@ !
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Schemes based on the ALOHA idea have been cxtensively treated [2,3.4]. ALOHA is obvi-
ously good when the system is lightly utilized and destructive interference is not very likely. When the
load is heavy a significant fraction of the transmissions will fail as a result of collisions.

The wasteful effect of collisions can be reduced if all transmissicns are of the sams length [S].
This is usually achieved by breaking long messages into packets of a fixed maximum size. In this
paper, we assume that this is always done and despitc the fact that one message may result in scveral
packets we assume that arrival of separate packets into our system is independent, and that the total
arrival process is Poisson.

The wasteful effect of collisions can be further reduced if time is slotted (where each slot has a
duration which is equal to a packet transmission time) and if terminals are constrained to start transmit-
ting only at the beginning of a slot. The resulting access scheme is called Slotted ALOHA, and the
maximum fraction of the time slots it can use for successful transmissions is known to be 1/e [6].

Let us choose the data unit so that the average length of a message is equal to 1. This is simply

a convenient normalization, which is equivalent to measuring communication capacity in mecsages (of
an average length) per second, instead of measuring in bits per second. The throughput-de'ay perfor-
mance of the ALOHMA schemes is not described by a simple analytic expression [3]. For simplicity we
shall use the following ad-hoc expression to describe the performance of the ALOHA schemes

- 1

7 C=eS 1
Here T is the average response time of the system and S is the system throughpui (messages per slot).
We shall assume that this expression describes the optimum envelope of slotted ALOHA and unslotted
ALOHA performance curves, (For S—0 it describes unslotied ALOHA, for S/C—+1/e it describes
slotted ALOHA.) Equaton (1) is a simple two-parameter approximation, that reproduces the known
behavior when S=0 and when S/C=1/e. For a similsr three-parameter approximation see [15).

Assume that the throughput S and the acceptable delay T are specified, and that we seek an
access scheme that will minimize the necessary system capazity C. For most purposes it is sufficient to
specify the communication needs by the dimensionless product ST, whose inverse we shall call bursti-
ness [7,16,17]. We stall define the quality [7] of an arbitrary access scheme as the inverse ratio
between the capscity necessary when using this scheme and the capacity necessary when using the best
possible scheme, in which messages form one queue and share one channel. When messages arrive
independently and their lengths are exponentialiy distributed the best scheme is the M/M/1 queue. in

which we have C= 5+ /7. The quality of the the ALOHA scheme is therefore simply ;TT.:li .

see that the ALOHA scheme then has a quality of | when the trafic is very bursty (ST<<1), i.e., it
needs no more capacity than the M/M/1 scheme, and a quality 1/e when the traffic is very steady
(ST>>1).

ALOHA systems with large populations have stability and control problems [3,8,9], but in the
spirit of maintaining the simplest possible approximaticn we sha!l not deal with them.

In the cemiralized system described above. all messages huve one common destination, even
though their sources are distributed. When the traffic to be carricd is between many terminal pairs we
have a different problem, which we shall call the nerwork probiem. That is, in a network, both the
sources of messages und their destinations are distributed.

SN




R AL il e

i In describing the centralized system we have implicitly assumed that all terminals can transmit
% with enough range to reach the station (i.e., we are not power limited), and that transmitting directly to
; | the station is the best policy.

If the transmission range is not enough to span the distance from source to destination, the
i message will have to be received by some intermediate node and relayed towards its destination. That
: is, & message may need more than one hop in orasr to rcach its destiration. The intermediate node i3
F : often called repeater.

f 1 We have assumed that the centralized system is a one-hop system, but we shall explicitly treat
‘ the question of transmission range in networks, since it introduces an important tradeoff: a shor:
g . transmission range makes more hops necessary, but reduces the interfering traffic. We shail see that
[ : choosing an appropriate range, as a function of traffic characteristics, will lead (o the self-adjusting capa-
; bility referred to in our title.

i ; In section 2 we analyze networks assuming that the range of every transmission can be perfectly
adjusted. In section 3 we analyze networks assuming the range of all transmissions must be equal. 1a
section 4 we introduce the idea of power groups and show how it improves ALOHA systems. In sec-
tion 5 we analyze hierarchical organizations of ALOHA systems with many levels.

2. Adjusting the Transmission Range

! We assume that the transmission policy of all terminals is chosen to optimize the overaill net-
{ work performance. In order to analyze the tradeoff between range and interference we need a detailed
; model. We shall assume that our network covers a region of space that is large enough to make edge
effects negligible. We shall also assume that terminals are placed everywhere with the same density,
;o and that the terminal density is very high, so we may make all calculations as if we had a continuum of
: terminals. Other assumptions we adopt are (7]:

oot (1) The rate of traffic exchanged between any two small geographic areas depends nnly on the size
of the areas and the distance between them. The rate does not depend on thie identity (i.e.,
location) of the areas or the direction from one to the other. That is, our network is homo-
gencous and isotropic in its statistical properties.

(2) The access scheme used is slotted ALOHA. That is, we ignore the fact that the synchroniza-
tion necessary for slotted ALOHA is hard to achieve in a network with long range transmissions
and partialiy overlapping ranges.

e B R R A 44 e i T A

3) The terminal’s antenna is simple, and the signal propagates equally in all directions.
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4) A transmission will not be bothered by other transmissions that are not within range of its (pos-
sibly intermediate) destination, but will be destroyed by any simultaneous transmission that
takes place within range of its destination. A transmission will be successful whenever it is the
only one within range of its destination. That is, we assume a d~finite range, beyond which nc
interference is felt. This is, of course, an abstraction of the rea! world, in which both suoccess- !
ful reception and destructive interference are probabilistic events.

e - ———

. Consider a given terminal with a rate of s messages per slot destined to another terminal. A
transmissior: wi'! be successful only if there is no other transmission with enough range to interfere
with it. Our terimnal will have, therefore, to offer a total traffic of g messages per slot in order to J

. succeed at ¢ rate s, were g includes retransmissions of previously unsuccessful messages. Let & be the !
total offered traffic pec slot heard at the destination. Assume that G is created by an infinite population




of terminals, and tha! the amoun! contributed to it by cvery source-destination pair is a Bernouili pro-
cess independcnt of the traffic offeree by any other source-destination pair. Returning to our given ter-
minal, whose contribution to G is minute. we must have s = ge~¢, where ¢ C is simply the probabil-
ity that no other message is transmitted in the slots used by our terminal. Summing over all transmis-
sionc heard at our destination we get

S, = Ge ¥ (2)

where S, denotes the total traffic successful at iis destination and heard at our destination. This total
traffic consists of messages with many different destinations, and the success of each message depends
; onr whet happens at its desiination. But all these messages contend with our transmission for the use of
‘ the charnel around owr destingtion. '
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Equation (2) looks exactly like the equation describing a centralized slotted ALOHA system
i6). G and S. do not, of conrse, depend on the transmission in Guestion, and we can therefore say that
any transmission sees an ALOHA system at its destiration with & throughput equal t» S., where the
. subscript on S, stands for contending. If we unnormalize S, and measure it in nwessages per unit time,
we may use (1) and write the average delay per fiop suffered by any message as follows:

; ; . i

' T e = 3) i
;_ C = e3, ( 3
3
[ In the centralized case, interfercnce always destroys both messages involved. In the network case ’
f : analyzed here this is not necessarily true. Since the ranges of the transmission involved and ifieir desti-

] : nations may be very different, a collision of two messsges at the first’s destination will destroy tke first, _
: 3 but may not bother the second at its destination. We shall use (3) for the deluy in ALOKA networks, ','3
b ' .

. even though what happens at each destination is not equivalent to a closed, centralized ALOHA sys-
: tem; this is supported by [10} where the optimal transmission policy for ALOHA networks, given the
hearing matrix, is shown to be identical to the optimal policy in centralized ALOHA systems. How-

ever, our goal here is to choose the optimum hearing matrix by choosirg the transmission :ange.

e g e e

& ' The discussion so far applies to any network which is homogeneous ¢nd isotropic in a statistica!
sense. To be morc specific let us assume thet the ierminais are distnibuted in an infinie two-
dimensional region. That is, in a region whose size is much larger than the typical distance travelled by
messages, so that edge cffects can be neylected. Let 5 be the total traffic oming out of a unit area, and
let f(r) be the traffic density. Thai is, the traffic going from oxe small (source) area dd, to another
small (destination) area dA, ismgivcn by f{r)dA.dA,;, wheie ris the digtance between the two small

, i arcas. We obviously nave S = f S 2mrdr and f{ri2ar/S is therefore the probabiity density funcedon
] ! r=0
E for the distance travelled by a rnessage. N, the avevage distance (ravelied by messiges. is given by

; N= f tf(r)2mrdr. To calculate S, the toial traffic coniending a! any destination, consic.. . n.99sAye
r=0

that must travel a distance of between r and r+dr. I: will be heard at & given destir.ation if it siaris zay-
where within u circle with radius r around that desiination. We can then write
S, = [nrfmrdr = wSN? i4)
re0

Where N? is the second moment of the distance travelled.

b iy

exactly enough range (o reach its destination in ore hop. Substituting (4) in (3) we sec that an
ALOHA neswork in whicli every missage reaches its destination 2xactly in one hop has the same Jdelay-
capacity relationship as a cemtralized ALOHA system carrying a tota! traffic SN2

(]
] ! Assume now that the transmission range is chosen in such a way that cvery message will have
¥
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The simplicity of (4) is a result of the assumption that power can be adjusted exactly to reach
the destination. Two objections can de raved to this assumption:

(N Will & terminal always have enougii power to reach its destination in one irensmission?

) Will the terminal have the capability to exactly adjust its powszr, and will .© ¥»qw the distancs (0
its d=stination, on which this adjustment should be based?

These two objections are especially important in the environment of many cheap mobile termi-
nals, which is exactly the environraent which makes the ALOHA idea attractive.

We shall treat these objections later, but let us now ask another question: even if we can adjust
the range so as to exactly reach the destination in one hop, is this a good policy? In [11] the guestion
was posed thus: should we take giant steps, assuming we :.an? [t was shown there that if, for a given C
and traffic requirement, the deiay per hop grows without bound as a functinn of the stey: size R, then
there is an optiraal step size, and steps should not be giant. We wish to find the opiimal rarge policy as
a function of traffic requirements, and for this we need the following:

Tk:orem 1: If a message must travel a distance X in k hops it should, in ozder to make the best use of
the comnunication resources, do so in k equai ups, each of ieny,:h X/k.

Prooff Whather we want to minimize T when S and C are given, or to minimize the necessary C when
S and T are given, we must, in order to get the bast system minimize she totul contending teaffic at
each destination. But this is equivalent to minimizing the tctal arca at which a given message is heard.
Let X; be the size of the ith hop, where L X, = X. The area in which our message is heard is propor-
tional to the L X;2. Minimizing the area at which our message is heard is therefors the follcwing sim-
pie problem of constrained minimization:

Minimize L X2

subjeci to L. X, = X
The solution of this minimization problem gives the equal step resuit stated in the theorem.

o]

Let us now consider the foilowing family of policies which use a perfectly adjustuble but limited
transmission range: Given the maximum range R, the path of every message wiil be divided into the
minimum number of equal hcns. Which R will give the best overall system performence? Should we
try to muake K as large s poasile? To answer these guestions we must detcrmine how S, depends on
R. Writing &, as a function of R and the distribution of the distances travelled is a straightforward but
cumtersome operation. However, the following bounds are simple to obtain:

Since S.(R) is a rmonotonic incrzasing function of R, an obvious bound s
SAR )(S,(oo)-wS:W . When R is very large all megsages wili reach their destination in one hop, so
the eauality tcre follows from (4).

Another bound, especially useful when R is small, can be obtained as follows: The total area
covered by the several transmissions of a message that has to travel a distance r can be bounded from

above by -é-er’ and S.(R) can therefore be bounded by

™

S{R: & [ LuRf(ri2mrdr = wRNS (5)
r=0

Fig. 1 shows the two bounds astd a hypothetical 5.(R).

Gl i R ek Lt AN e b M b L 6wt L A WAk 1 1 e b o e i . ey

SURVEDTPD IS ER -GPSR VEDSS SRR St S NP

o T Tl e

i

e b st ool sisabomad Kok A

- R I U P - S AN . "‘i




MU AR e =t LN

e AT

AR T T T

e e I

e AT

T Y IR 5

- .
. A . - . - N s A a s o s A we s LS . v -
3 , ‘
i il " RN e ek RS e b a2 3 Gt S b 20 2 A Vs i ints, bl curtca b

BV A LT R SR e AT L T A T R TR T RS TR e

g e A A a L e e

7SNR

A HYPOTHETICAL 8,

Figure 1. Two Bounds on S, ths Tatal Successful Traffic Coritending at Esch Point.

We shall ussume that the traffic to be carried is specifed, that an acceptable delay is specified
and that the goa! of a good design s to meke the necegsary bandwidth as small as possible. The
specification can be summarized by the dimensionless quantity N2ST. When N2ST<<1 we cali the
nétwork, and the traffic. dursty, and when N3ST'>> 1 we cail the network steady.

For small 8 we can use the bound of (5) a3 an approximation for S.(R), and we will combine
it with N/R as an approximation for the average number of hops per message, to get the following
approximate expression for the delay

T - N/R
C—enSNR
Inverting we get
C = ensNR + 1 N 6)
T R

and from this approximate expression for C we can get that the optimal R (i.e., the R that minimizes
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the necessary C Tor given N,S and T) is given by

R %)

N = JmeNST 7
While we use the term optimal R, squation (7) actuall;’ determines the optimal value for the marimum
transmission range. Given the distance a specific message must travel, R determines the necessary
numbar of hops, and the trunsmission range of all hops is then ciiosen according to Theorem |. The
capacity necessary when using the optimal K can be obtained from (6) with the use of (7); it is given
by the following relation between CT and N2ST, both of which are dimensionless quantities,

CT = 2VenNST (8)

When the traffic is very steady (i.e., when N2ST>>1) (7) says that the optimal R will be much smaller
than N. The approximations made when writing (6) are consistent with this result, which is also quite
intuitive: Consider a steady system with a given S and a !arge 7. When we are willing to tolerate a large
T the number of hops can be large, and we can therefore choose a small R. Each message will thoui =
heard only in a narrow strip along its path, so S, will be small, and the necessary bandwidth will ihere-
fore also be small. When the traffic is very bursty we get from (7) that R is much larger than N. This
is again very intuitive - when the traffic is buraty there is little contention and therefere almost nothing
is gained by forcing a message to undergo more than one hop. But the exact value given by {7) is not
meaningful when the traffic is bursty, because the approximations used when writing (6) are not valid
when R is large.

A general conclusion that emerges is that in a two-dimensional network it is better to limit the
transmission range even if our terminals can adjust their range exactly and have no power limitation.
This voluntary limiting is especially important whei, the traffic is very steady, and the optimal range limit
R is then given by (7). i

How shall we define the quality of networks? Clearly one should nor compare a network to one 1
huge centralized M/M/1 system that carries all messages to one common destination because practical 3
networks have an advantage over centralized systems: The same capacity can be used in different
regions of the network to successfully transmit different mcssages at the same time. That is, network
capacity can be spatially reused. !

A common measure used to characterize access schemes is the maximum utilization they can
make of the given communication resources. This maximum utilization is sometimes called capacity,
especially by authors whose variables are normalized by the slot size, and who therefore do not expli-
citly mention the channel bandwidth. We use the word capacity to describe an amount of communica- ‘
tion resources (i.e., the number of bits or messages that can be transmitted per second) and utilization H
to denote the useful fraction of that capacity. . i

The quality of a very steady centralized system, as defined by us [7], is equal to its maximum
utilization. But utilization is not a good measure for networks with a continuum of terminals since util-
jzation can be arbitrarily increased by spatial reuse, i.e., by limiting the transmission range.

It seems that every network organization must address the question of how to coordinate every
transmission with at least all the traffic that is heard at its destination. Since the best possible system
will coordinate this traffic perfectly, we shall compare all networks to the network that uses the same
technology (i.e., omni-directional antennas) but that somehow achieves perfect coordination between
the traffic contending at every point, and in which transmission ranges are chosen optimally. We shall
define the quality Q of any network to be the inverse ratio between the capacity necessary for it when S
and T are given and the capacity necessary in the M/M/1 network for the same § and T. In general
Q<1, and equality holds only for the M/M/l network itself. The capacity necessary for this
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: best possible M/M/1 network scheme is in general a function of S, T and the distribution of distances
] travelled. For very steady traffic we get, in analogy to {7), that the optimal R is given by
R 1
A o 9)
N vV NiST (
_ and when using this R the capacity necessary is
. CT = 2NaNST 10)

Dividing (1M by (8) we get that the quality of heavily loaded two-dimensional ALOBA network with
the optimal step size is 1/vVe=.607' How did we get this dramatic improvement over the heavily
loaded centralized ALOHA system, whose quality is 1/e=.367?

% We may say that every message sees at its destination an ALOHA system whose utilization,
| : which we shall call Jocal utilization, is S./C. When the traffic is very steady and when the optimal R is
; used we get from (7) that every transmission sees an ALOHA system whose local utilization is 1/2e,
’ i.e., half the maximum possible utilization of an ALOHA system. The quality of a centralized ALOHA

; system with this local utilization is .68. {t is only at much higher utilizations (closer to 1/¢) that the

, quality of a centralized ALOHA system goes down to 1/e. The need for several hops will bring the
P quality of the ALOHA nerwork down, from .68 to .607 . We see therefore that by choosing the optimal
D . R as a function of burstiness our ALOHA network has gained a self-aqjusting capability, and it will not ]
; . allow itself to be pushed to higher loads, where it is really bad.

e

: From (8) and (10) we see that two-dimensional networks with the optimal R show an economy
; of scale when very steady: for a given T, the necessary C grows only like V5.

Compering (7) and (9) we see that the optimal transmission radius R in a steady ALOHA net-
work is smaller than the optimal R in an M/M/1 network by a factor 1/ve. The optimal R in both net-
works goes to zero s the traffic becomes very steady. We have implicitly assumed that there always is
a terminal at the end of the hop that can receive our message and forward it. But if R becomes too *
small there may not be a terminal so conveniently situated. If R becomes even smaller, our terminal ]
: , may not be able to communicate with any other terminal, and the network may become disconnected.
f ; Kleinrock and Silvester {12] treat this issue explicitly, wtile calculating the optimum transmission range
with a different objective: obtaining the maximum throughput from the given channel, assuming
infinite delay is acceptable. We shall not treat this issue here, but our assertion about the self-adjusting
capability of ALOHA networks must be qualified.

g, =

E i Consider once again an ALOHA network and an M/M/1 network, both carrying the same very

: steady traffic. If it is practical for the ALOHA network to choose the optimal R according to (7) then it
i will need only Ve times more capacity than the optimal M/M/1 network, i.e., its quality will be 1/Ve.
5 Hui i€ R cannot be made so small, the quality of the ALOHA network will go down. If the ALOHA
| network 15 vcnstrained to use the same R as the optimal M/M/1 network then its focal utilization will !
? be 1/(e+1)=~.263 and its quality will be 2/(e+1)=.538. If both the ALOHA and the M/M/! networks |
i carry a very steady trafiic bui are constrained to use an R that is much larger than the one given by (9)
' then the local utilization of the ALCHA network-and its quality will be 1/2.

Fig. 2 sketches the dependence of the nccessary capacity on the transmission range, in the
two-dimensional ALOHA and M/M/1 networks.

P PV S

, Our treatment of two-dimensional networks can be summerized and generalized to
i n—dimensional networks as follows:
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Theorem 2: Consider an n—dimensional ALOHA network carrying very steady traffic, where n> 1.
Assume that the (ransmission range can be perfect adjusted, but only up to a maximum range R. If R
can be optimized freely (i.e., made as sm.il as necessacy) then each transmission will see an ALOHA
system whose local utilization is 1/ne and the network quality will be 1/¢V/*,

Proaf: The volume of an n—dimensional sphere with radius R is vR", where v is a constant depending
only on » (when n=2 v=n). Theorem 1 will be valid for any n> 1. That is, if a message must travel
more than R it should do so in the minimum number of equal hops. In analogy with (5) we therefore
gei

S.(R) < vSNR™! (an

When the traffic is very steady and when K << N this bound is a reasonable approximation for S. and
we get the following estimate for the capecity necessary when S and T are given:

1N

- n—1
C ewSNR"™! + T R (12)
The R that minimizes C is given by
\/n
1
R ‘ ST (n=1) ] (3
and using this optimal R we finG that the capacity necessary is
N . I/n
C - —T—n[evsr(n—l)' ] (14)

For that n~dimensional M/M/1 netwerk we get a set of equations very similar to (12)- (14), but in
which 1 is substituted frr e. (Compare for example (8) and (10} in the two-dimensional case.) From
(13) we see that the optinial R in an n—dimensional ALOH\ network is smaller than the optimal R in
an n—dimensional M/M/1 network by !/e'/”. As long as this smalier R is consistent with our model
we can derive from the dependence of C on e shown in (14) the quality part of the theorem.

The local utilization is, by definition, equal to

Sc _ wSNR"! .
and substituting (13} into (15) we find that when the optimal R is used the loca! utilization is 1/ ne.
0

Theorem 2 can be immediately generalized to the situation in which the antenna carried by ter-
minals is somewhat directional. Assume the antenna radiates into a cone, which takes a fraction o of
the sphere. This is, of course, a gross simplificstion of the real radiation pattern, but is consistent with
our simple modeling of transmission range. 1f we compare the case of an omni-directicnal antenna to
this case of an a—directional antenna we find that, with any transmissior policy, the total interfering
traffic at any point is smaller by a factor «. The optimal R for steady traffic, given by (13), will become
larger by 1/a'/" (we shall not have to push so.much towards small R), and the necessary capacity of
(14) will become smaller by «'/" But when we compare an a—directional ALOHA network to an
a—directional M/M/1 network we find that the local utilization and the network quality in the optim-
ized structure will remain as stated in Theorem 2. An improved :echnclogy (i.e., directionality) will
help both the ALOHA network and the M/M/1 network. But whenever they use the same technology
a comparison between them will show the inherent cost due to the random access aspect of the
ALOHA network, and this inherent cost is e'/".
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In Theorem 2 we assumed n>1. The reason for this is that Theorem | can be generalized only
for the case n> 1. When dealing with a one-dimensional ALOHA network we get

Theorem 3: S, the amount of contending traffic heard at a point, is equal 10 2NS, and is independent
both of the aeed to breuk message paths into several hops and of the policy of implementing such a
break, 2s long as the policy is applied everywhere in the same way. That is, us long as 2 message pati
of a given length will be broken in the same way, wherever it originates.

Proaf Consider a message that must travel a distance X, ard let X; be the length of its i-th hop, where
I X, = X. The i-th hop will be heard at a given point if the path of the message is so placed that the i
th hop starts within X, of that given point, on either of its sides. Adding the contribution of all the
hops we see that a message whose total path length is between X and X +dX will always cgntribute to S,

an amount proportional to 2X. In this one-dimensional network we have S-ff (x) dx and
0

N= lij f(x) dx. S, is therefore given by S, -f2xf (x) dx=2NS .
0 ()
0

In one-dimensional rnetwerks, if range can be perfectly adjusted we should, therefore, giant-step
whenever possible. Even when the traffic is very steady there is rv ~2ason to limii the step size, since
no decrease in S, will follow One-dimensional ALOHA networks have a local utilizatior: and a net-
work ouality both of which are equal tc 1/¢

Theorem 2 answers the guestion of the optimal transmission range when the troffic is very
steady. This is satisfying because ALOHA has an efficiency problem exactly when the traffic is s'ead>.
When the traffic is bursty there is little need for improving the ALOHA network. When range is par-
fectly adjusted th~ range limit R grows when the traffic becomes bursty, and when the traffic is very
bursty giant stepping i« the best (for all n). That is, each message should be transmitted with enough
range t¢ reach its destination directly (in cne hop). These genera! conclusions chiunge once we consider
networks in whi~h -aage cannot be perfectly adjusted. as we shall now dc.

3. Using A Fixed Range

Assunie that terminals cannot adjust the range of their transmissions, and that all transmis-
sions, by all terminals, must have a fixed range R. Since the range of all transmissions is fixed and con-
stant, some r.-essages will overshoot their destinations. The amount of traffic contending at every point
will therefore be la.ger now than it was when range was perfectly adjrsted. S, will depend on R in a
way that involves the Jistribution of distances travelled by a messcge, but the following bounds are
simple to obtain:

In ar ~—dimensional ALOHA network
WR"'SKS, (16)

because at every point we hear at least the first hop of ali messages originating within R. In analogy to
(11) we get

S KSR UN+R) an

because the average distance actually travelled by a message when ihe iransmission range is predeter-
mined at R is at most R+N.

11
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From (17) we get the following:

Theorem 4: When the traffic is very steady the transmission range that is optimal when all transmis-
sions must have the same predetermined range is equai to the optimal maximum range when range can
be perfectly adjusted.

Prooft When ihe traffic is very steady and R is small, the bound of (17) is a good approximation for

S.(R). Using this expression for S, we can continue as in the proof of Theorem 2.
O

This theorem is very intuitive: When the optimal step size is small, the capability to adjust
transmission range is not important, since the overshoot will be small.

It immediately follows that the network Guality and the local utilization that were used i»
Theorem 2 to sharacterize the optimai network for very sieady traffic when ti:e range is perfectly adju- 1
stable will atso characterize the optimal network whea the range must be predetermined.

When the range is perfectly adjustable the one-dimensiona! network was a special case, in which
giant stepping was appropriate. When the range must be predeterinined we see from (16} that S,
increases #ith R. When all transmissions have a rarge equal to R it must, therefore, be limiied even in
the one-dimensional network.

When the traffic is very bursty (N"S7 <<1) we expect R to be larger with respe-t to N, and
shall then use the bound given in {16) as an approximation for S.. When R is large we al~c assume no
message takes more than two hops and we approximate H, the average number of hops taken by a nies-

sage, by
H = ' + Probability (diswnce travelled > R )

The capacity necessary can ther be approximated by

H
- "xq — -
C = evR"S + A

by -
i i . s bl s Sl i AL Sl =S o0 i Ll e e

and the R that will mirimize < is now given by solving the following equation:
nevSTR"~! = Probability density (distance travslled = R)

For a very large R it is reasonable to assume that the probability density of the distance travelled is
monotonic decreasing and this equation will then have a unique silution. If, for example, the distribu-
tion of distances travelled :s exponential we get the following approximate equation defining the optimal
R in a bursty systern: R/N = In(1/veNSTR""Y). i

PRI

When considering centralized systems we can say that the ALOHA scheme is good when the
traffic is bursty ar:d bad when the traffic is steady. This statement is irue in general for ALOHA net-
works too. But networks have self adjusting property - by controlling the maximum transmission range
and reducing it when the traffic is steady we can make ALOHA networks (in more than one dimension)
suffer less from destructive interference than ike ALOHA centralized system.

In the next two sections we shall consider two other ideas that can improve a centralized 3
ALOHA system and see what they can contribute to ALOHA networks.

12
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4. Capture, Power Groups and Partial Coordination

in the models of ALOHA systces presented so far we assumed that in the case of interference,
both messeges will be destroyed  But it the colliding messeges vary greatly in received power, the
recciver may be able to receive the stronger one correctly even in the presence of the other, weaker,
signal. The receiver is then said to capture the stronger signal. The capability to capture some mes-
; . sages will obviously improve every ALOHA systein. Let us first see the resulting improvement in a
cenualized ALCGHA system, where ali messages have one common destinatior.. Roberts (6] proposed
! and analyzed a capture mode! in which the power differences resulted from different distances to the
| : common destinations. Our approach is different. We shall assume that the terminal population is split
: into two groups, that one group is (ransmitting with more power than the other, and that this splitting is
{ purposcly done in order ¢ improve system performance. In order to abstract the geometric details out
' of the model, we shall adop: the following assumption [13]: The powe: of the two groups is significantly
f » different. When two transmissions from the same group occur simuitaneously, they will always destroy
’ each other. When one strong transmission and any number of weak (ransmissions compete for the ear
of the common station, the strong one will always be captured successfully. This separation into groups
introduces, therefoie, a partial coordination into the random world ot ALOHA.

cpet Y
*

e e e

it may be possible to achieve such a coordination between groups by techniques that do not rely
on a powe: difference between them. A distinctive preamble, for example, may allow a terminal to
\ : suceessfully receive a transmission from one group, which we shall calt strong, even in the presence of
b R transmissions from the week group. In a system which is not perfecily slotted, the first of two interfer-
ing signals oi equal strength to arrive at a receiver may survive the collision and be successfully
received.  From now on strong and weak should noi therefore be taken literally - they do not neces-
sarily refer to transmission power, but simply characterize the group of transmissions likely to win or
lose when competing with the other group.

What will be the rasulting improvement if we introduce groups into a heavily loaded ALOHA
' ' centralized system® If the strong group is selfish it can ignore the weak group. and use the channel as
g . much as possible. The strong group will then successfully utilize 1/e~=.367 of the slots, and will leave
367 of the stots irec. (In addition, .276 of the slots wil' be wasted on collisions). The weak group can
utilize at most 1/¢ of what is left free for it, i.e., it can utilize 1/e2=0.125 of the slots, and the total
rate of success by both groups will be 0.503,

The channel cun be better utilized if the strong group will not be so selfish. To see this let us
now consider the division into groups as a design parameter.

Assume that we have an infinite population of terminals, and that each terminal contributes
only a minute traction of the total traffic. While we have spoken of strong and weak terminals, the
] important design question is nof the identity of terminals in each group but the portion of the traffic in
' each group. If we have an extremely heavy ioad our goal is to find the division into groups that will
allow our system to utilize the greatest portion of the communication resource available. Let G, and S,
be the total offered traffic and the rate of success of the strong group, G; and S; the corresponding
values for the weak group. For simplicity we shall assume in this section that S and G are measured
per slot size. Using our standard assumption, that the total traffic offered by a terminal is a Bernoulli
process, independent of the traffic offered by all other terminals, we can write

S| - G| €‘G|

. -G, -G
S, = Gye te !

Choosing G| and G in order to maximize S=S,+S, we find that the utilization of a system with two
groups is




e-\1-Ver o 053} (18)
r and that this u‘ilization is achieved when
M
: 3, = e—1 (19)
1 The above treatment can be generalized to many groups. Assume that the terminals are

divided into r progressively weeker groups where the following is true; A message will never be both-
ered by transmissions frcm weaker groups, and will always be destroyed by transmission from its own
group or from a stronger group. We then have:

Theorem 5: Let V, be the maximum utilization of a slotted ALOHA system whose infinite population
: is optimally divided into r groups, with the above assumption on immunity to some cases of interfer-
i ence. Then V, satisfy the following recursion relation:
-(1-¥,)

Voot = € (20)

Proof' 1n analogy to the two group case we can write

S, = G e ¥ Q2n

-G, -G
Sz - G;e le !

. G, -G
S, = G,e " e !
V, is obtained when S=5,+5,+...+S, is maximized by varying the G,. Since no transmissions from
: ‘ weaker groups will ever influcnce the strongest group we can optimize their throughput separacely, and
! (21) will then reduce to

S| - G|P"Gl 22}
S)t o 48, = Ve © .
I . .
¢ i The optimal G, is then casily found to satisfy G, = 1—¥, |, and substituting this G, into (22) we gat
‘ f (20).
i 1

The sequence V,, whose first portion is shown in Fig. 3, is a monotonic increasing sequenc:
converging (slowly!) to 1. This is not surprising since when we have a large number of gioups most
collisions will be between messages from different groups, and one of the messages will be successful.

Having a large number of groups with the clear separation assumied in Theorem 5 may be
impractical. But having two groups is reasonable, and we shall discuss this case in some detail.

Eq. (18) gives the maximum utilization ef a two-group ALOHA system. Wha! will be the deluy
in this system? Returning now to our custom of mecasuring S in messages per unit time (and not per
slot), we shall model the delay by

$\/S + S/S

T C-eS) . Vs,

‘Gl/(.

¢

L where G, isgiven by S| = Ge
)
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Figvrs 3. Moximum Utihization of ALOMA With Power Groups.

This expression for T is a weighted sum of two de'ay terms. The first term corresponds to the
deiay in the strong group, (which can ignore the weak group and that behaves like an ALOHA system
with capacity C and traffic §;.) The communication capacity available to the weak group is Ce—G"C
since this is the portion of the channel left unutilized by the strong group. The second term
corresponds to the delay in an ALOHA system with this reduced capacity carrying a traffic S,.

With a given C and with a given total traffic S=5,+5,, which §) and §; will give the minimum
delay? The best S| and S as a function of load can be found numerically: Fig. 4 gives the quality of
the two-group ALOHA system thus optimized. When the system is only lightly loaded, §)/S; is only
slightly larger than one. When the load grows this ratio also grows, and whea the system is driven to
its maximum utilization S,/S; goes to e—1, as given by (19). Also shown in Fig. 4 is the quality of a
two-groups system in which the ratio between S, and $; was always chosen by (19), which is the
optimal choice at heavy traffic. We see thet the improvement gained by optimizing the ratio between
S, and S as a function of load is negligible, and thet a very good two-group centralized ALOHA sys-
tem can be obtained by simply splitting the terminal population so that the traffic contributed by the
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strong group is e—1 times the traffic contributed by the weak group.

Until now we have applied the idea to partially coordinated groups (i.e., power groups) to cen-
tralized ALCHA systems. How can it be applied to networks? In our analysis of ALOHA networke we
have used the transmission power to control range. We shall now assume that the division into groupe
is done by means which are independent of power so that transmission range can still be freely chczen.
We shell also assume that the policy of ussigning transmission power is independent of position, and
that the d=nsity of both sirong and weak sourcas is high ard uniform.

e e e PG IR RN T

‘ One simple way to improve ALOHA nctworks by using groups is the following: The same
E transmission range will be chosen for both strong and weak transmissions, and the partial coordination
} between them will simply improve the local ALOHA system. From: (18) we get that the maximum
y :

local utilization of a two-group ALGHA system is 0.531. Substituting this in (8) we see that by using
iwo groups with the same range the quality of a two-dimensional network can be improved from

: 367=.607 to ".531=.729 . In one-dimensional nctworks the quality is equal to the local utilization ]

» ' and using two groups will improve both from .367 s 531,

We see that since networks of high dimensionality are less sensitive to the limited utilization of
the ALOHA scheme it is harder to improve thera by introducing a better scheme.

T e TR Eremm o

i A

The capability to divide terminals into two partially coordinated groups can lead tc a greater 3
improvement of ALOHA networks (in two or more dimensicns) if transmission rarge is chosen P
indepzndently for the two groups. i

PR e - s

Let us consider a two-dimensional network and assume at first that the average . stance
; travelled by transmissions from both strong and weak groups is equal to N. We shall also assume t*
if a message needs more than one hop then all of its hops will be strong or all of them will be w~ ..
Let S) and §; be the traffic density of the strong and weak group, and let 7; and T, be the av.age
delay suffered by messages from the strong and weak grotp respectively. In a heavily loaded system, if
. the strong group is absclutely selfish it will utilize the full channel in the way best for it and we then
get from (8) that T; and S satisfy

[ T e

ETSUITER T R TRATI TR T TSR T T TS e T AT e .
»

D A L s s e e al ) D

NS
T\ = den C,‘ (23)
4 The local utilization of the strong group, when optimiicd for heavy traffic, is 1/2e. It is easy to caicu- §
’; late that the strong group leaves then a fraction b=.793 of the time clots unused, and these slots are ‘
9 ; available for the weak group. That is, the capacity available to to weak group is &C. Using (3) we get
3 : that |
; NS,
; T, = 40#;2? (24) {
3 b . . ]
3 ‘ T, the message delay averaged over all messages, from both groups, is given by 78 = T8, + T3S, and
« our goal is to minimize T by choosing §; and S, subject to §,+5,=S. It is simple tc see that T is
minimized when S,/S,~1/b?=1.261 and is then given by
| N i
T = 4n—S=22 25) :
"Tre (

The quality of this two-group network is therefore v (1+b%)/e = .774. 1
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Can this result be improved if messages from the two groups wiil not travel the same average
distance? Let N, and N, be the average distance travelled by messages from the sirong and weak
group, respectively. Substituting N, for N in (23) and N, for N in (24) we have T, and T,. Gur goal

now is to minimizt;.v Tssubject to NS+ N,8,= NS and subject to S, +S,=S. It is easy to sce that T is
minimized when N;Sl - 'b'lz" 1.261, and that the minimal T is given, once again, by (25). That is,

the added flexibility of giving each group of messages a different average distancc does not lead to a4
better network!

{t is interesting to note that ﬂ- -N—' but that $iT, -t 1.261. That is, we can choose the
: T, N §$;7, 2 T !

ratio between 7'y and T, at will (by adjusting N;/N,) but the contributien of the strong and weak group

to the average delay and to the average number of messages in the network will always, in an optimized

system, be in a fixed ratio.

Let R, and R, be the maximum hop size in the strong and weak group. Using (7) we see that

R .
when T is minimized ;'—-b— .793 That is - the strong group carries much morc of the traffic, and
2

even though it has more bandwidth available, it uses smaller hops.

When choosing 5;,5,.N¥, and N, in order to optimize the two-dimensional network with two
groups, we have assumed that the strong group is selfish. But we saw before that a better overall sys-
tem can be obtained f the strong group is not absolutely selfish, and does not use the channel to its
utmost. How conside-ate should the strong group be in a network?

The average delay in the strong group can be written (when N ,>>R) as
__N /R,
C—enwR|N,S

Here we cannot use (8) because when the strong group is considerate it will use a smaller range R,
than the range used by a se!fish group.

T|=

The weaker group does not bother anyone, and should use what is available to it to the utmost.
Let b denote, once again, the fraction of capacity available to the weak group. (b is now a design vari-
able, perametrizing the amouat of consideratzion shown by the strong group). To the weak group we
can apply (8), and we then get T, = 4e1r——):§;22. Our geal is to minimize ST =5,T,+ 5,T; by choos-
ing Si,N,R|,5;, N, and R; subject tc $+S=S. SN+ S,;N,=8N. When choosing $,,N, and R; we
also determine b. To see tkis let us denote by G the total iraffic (per time slot) orfered by the strong
group which is heard at any given point. G can be determined by equating the following two expres-
sions for toe success rate of strong messages at any local ALOHA system: Ge ¢=a R |N,S:/C. b, the
fraction of time slots left free by the strong group, is given by &=¢~% T cbviously depends on
§1,N1,S; and N, only via the products S|N, and S;N,. The results of cL.oosing the best SN, and
S,N,, for a given R, 2an be most simply written in terms of G

NS 1

T = 4¢7q 5
¢ 4eGe"Gll——eGe‘G'+e'm

The ¢ which minimizes T can be found by numerically solving the equation d7/dG =0, und is given by
G ™ .179 . bis then equal ©0 e~ %= .836 and the quality of this best two-group two-dimensional net-
work 15 then (782, In this network, with a considerate strong group, ws have N,;5;/N,;S; = 1.380 and
Riy/K, = 0.704 . Comparing with the selfish casc we see that comsideration leads to an overail

it e P




: -
. : She L

- PTT: W 7Ty M

F,j-r,,r A . SR TR e .,‘?‘.',:.‘ R T e g

improvement even though the considerate strong group carries more of the traffic, moves with smaller
sieps and uses less of the chennei velative 1o the weak group.

‘ ; For o summary cf the optimal range and thc necessary capacity w1 various two-divnensional net-
[ N works see Table 1.

| é ) Table |

’ Best Transmission Range and Needed Capacity for Two-Dimensional Nc¢tworks

| Organization Range Capacity»__h_

! M/M/I Py K

| ALOHA (one group) 607R, 1647C,

7 . r___ALOHA (two groups, same reoge) 129R, 1.372C,

‘ ALOHA {two groups, separate ranges) selﬁslh 174Ro E;?‘EZCC'

: L considerate .182R, i 1.299C,

‘ i —

; 2 Co=2NnaNS/T

Ro= 757 ComWmN'S/

3 5. Multi-Leve) ALOHA

Until now we have always assumed our ALOHA systems have an infinite population. Let us
now consider a sloticd ALOVA system with a finitc number, m, of eq :olly (alkative terminals. Assum-
ing the traffic offered by any terminal at a given slot is independeant of the traffic offered by other termi-
nals or at other time slots we can simply see [2] that such an m-terminal ALOHA system can success-
fully utitize a fraction of the time slots equal to '

i m-1
- ——] {26)
m

3 The 1est of the time stots will be wasted on destructive interference, or will be left unused even with
some messages waiting for transmission.  This iast occurrence is necessary in an opvimized system to
cnsure the fraction of siots wasted on collisions is not too iarge.

When m is very large, Eq. (26) states that the maximum utilization of an infinite population

: slotted ALOHA is 1/e, which is the expression we used before. But when m is finite the ALLOHA sys-

) ‘em can do better. The best case is when m=2, and the maximum possible utilization is then 1/2. One

) could also talk about an ALOHA system with only ore terminai, that can usc a!l time slots without any
wastelul collisions, but this case is of no interest.

; In analogy to (1) we shall model the delay of a finite population stouited ALGHA system by

1
T = C :5/_‘/_,"_ n

where U, is the maximum possible utilization of an m-tevminal system, as given by (26).

Since ALOHA systems with a small population have better utilization and smaller delay than
ALOHA systems with a large population, one is led to the following hierarchical scheme: Divide the
very large terminal populdtion into a smail number of groups. Assign a repeater to each terminal
group. Each group will communicate with its repeater using ALOHA, and the repeaters will

19
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| communicate with the station using ALOHA. Aill communications will use the full cepacity of the
i channel. Repeaters may be necessary in order to extend the range of transmission, but we shall assume
: this is 0t a problem, end shall only be interested in introducing repeaters in order to improve system
1 S performance. That is, to lessen the deiay when S and C are given, or lessen the capacity necessa;

ST T TR O AT PN AT R T eyt

when §and T are given.

P - Should all groups of terminals be of the same size? To minimize contention in the bottom

f ievel ali ALOHA subgroups should carry the same traffic, i.e., a sy 'wumetric bottom level is best. But 7 .
order (0 reduce the contention in the top level we should have as much asymmetry as possible. * .
.‘ best top level wili consist of one repeater forwarding all the traffic (o the station without any confl...
But such a two-level system will not help us, because its bottom level itseif is equivalent to the oine-
level system we set out to improve.

Since two-level systems are introduced in order to reduce the conterition in the bottom level we
: shall assume that whenever two levels are better than one, the traffic is evenly divided between groups.
- Gitman [14) introduced such a scheme and calculated the capecity of iwo-level systems. He assimed
v ail terminal groups can use the same channel without inter{erence, that a terminal cannot be suscessfu!
when its repeater is talking to the station, i.e.. the repeater cannot talk and lisien at the same time, and
that a terminal mav be influenced by other repeaters talking. The largest capaciiy is obtained when the
terminal is influenced only by its own repeater. and when there are only two repeaters. But even then
the capacity obtained is less than 1/2. The reason for this is the following: Let S be the total
throughput in ihe system. Let G be the total offered traffic in the top level, that consists of two
repeaters. G is Jarger than § because it includes the retransmissions of messages that have been previ-
d ously transmitted unsuccessfully. !n a system with capacity C the slot size will be 1/C since we have
chosen an information unit such that the packet length 1s cne. The throughput and the offered traffic
per slot will ihen be S/C and G/C. We shall assume that the traffic per slot onered from each of our
two repeaters is a Bernoulli process, i.e., 2 discreie Poisson process, which is independent (!) of the
traffic offered by the other repeater, A transmission from a repeater will be successful only if the other
is not transmitting in; the same time siof. Calculating the total succass rate in the iop level we get

I R Datidi S

: S G
A C 2C
, where G/2C is the iotal traffic offered by each one of the two rapeaters, and 1--G/2C s the probability
: , that a packet sicceads. In order to achieve S/C=1/2 we must have G/C=1, so that each of our two
} ; repeaters is talking half the time. It is iraposciole to feed such a talliative repeater from an infinite

: 1 popuiation of terminals, because the miaximum success rate of cach of the two groups is
: , (1~-G/2C)/ e=.184< 25,

(28)

SRATRETTR T AT TRy L DT T AR T et s e

The maximum throughput of such a two-level system is given by tie follewing set of equaticns

G

:. S = Gil T

q

3 S -Gl
C 21 2Cle

from which we get that the maximum S/C is equal to 0.465. So even though we cannot achieve the
full capacity of a two terminal system we do get an improvement over » one-level ALOHA.
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f_ We shall model the delay of our two lavel system by the following ad-hoc formula

]

_ - 1 1

- T'= c-3s*c=em-en

[:' This equation gives T in terms of C and S, where G is also given in terms of C and S by (28). The first
: [ term stands for the repeater-to-station deluy, as given by (27) with U;=1/2. The second stands for the
X W terminsl-to-repeater delay. It is also based on (27), with the following modifications: Since a repeater

cannot listen while talking, the capacity available to each of the terminal groups is C—G/2. §/2 is the
tiaffic carried by each group, and 1/e is the maximum utilization of an infinite population ALOHA.

A three-level organization, as shown in Fig. 5,

N|=
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f_; WHEN SYSTEM IS DRIVEN TO ITS MAXIMILM UTILIZATION NUMBERS ON LEFT
; & CF LINES SHOW FRACTION OF TIME NOL'E 'S ACTIVE. NUMBERS ON RIGHT

L SHOW FRACTION OF TIME NODE I8 SUCCESSFUL 3
1 3
; Figure E. Structure of the Thres-Level ALOHA System. :
-' i

can improve the system performance even more, for high loads. In the best possible situation, we shall

have only two cases of interference: Two messages trying to reach the sar.ie repeater will destroy each

other; and a message trying to reach a repeater that is itself transmitting will be destroyed without both-

ering the repeater’s transmission. In this case the system can drive the top ievel to its capacity, and the

utilization can be 1/2. Fig. 6 shows the quality of one-level, two-level and three-level ALOHA sys-
. tems. For comyarison the quality of FDMA with 1024 terminals is also shown.

A il Ak i . R LA o

21

i N . - TN Bt T A LN




:

QUALITY

1.00

ONE-—-LEVEL ALOHA

THREE--LEVEL ALOHA

020 |~

V4

/

TWO-LEVEL ALOHA

FDMA
1024 TERMINALS

Ll | L1 ul Lt

L L1il

i s e AT ol VL . P4 B [T e

1 10 102 103
ST

Figure 6. Quality of the One, Two and Thres-Level ALOHA Syswems.

104

22

TN e A e At e

PRSP PEE SU S S X 1 TR RPN P E




Four or more levels will never improve the performance of an ALOHA system, as given by our
model. To see this consider Fig. 5 again: The numbers on the left of the lines in the two top leveis
, give the traffic per slot that must be offered by the repeaters when the system is driven to its maximum
i A utilization. The numbers on the right give the rate of successful traffic per siot in each hop. In order
' ; to get a utilization of 1/2, each of the top-level repeaters must be active 1/2 of the time. and will be
; successful on the average 1/4 of the time. Each one of the second-level repeaters must te succeseful
T 1/8 of the time, and must therefare be active 1/2 of the time. The capacity available to each one of
the bottom-level infinite population ALOHA systems is C/2, and the delay in each will be

T-m. When the system is driven to its maximum utilization we have S=C/2, and the
E burstiness of the bottom-level ALOHA system is % - —_l_—; ~ .78. From Fig. 6 we see that at this
? 3

burstiness a one-level ALOHA system is still better than multi-level systems, and the thwee-level
ALOHA system cannot, therefore, be improved by splitting its bottom level into more levels, esven
when it is driven to its maximum utilization.

We have just seen that multi-level ALOHA centralized systems can be better than one-level E
ALOHA when the traffic is heavy, because in the top level we can have a contention system with a
small population, which can better utilize its communication resources. Will such a multi-level organi-
zation improve networks?

R e e Rt

_ ¥ Let us start with one-dimensional networks, and introduce equally spaced repeaters as the top
3 '}5_ level. We shall have the smallest population of contending repeaters when transmissions go only from
b one repeater to its two nearest neighbors. Assuming omnidirectional antennas we find that three i

B

repeaters, i.e., the source, the destination and its other neighbor, contend at every point. The max-
imum utilization can therefore go up, from 1/e to 4/9, but the amount of contending traffic has also
gone up, from 2NS 10 INS' The reason for the increase in contending traffic is that when we assumed

J ‘ g a continuum of terminals and considered a given transmission, the amount of traffic generated exactly
at our destination was negligible and our transmission had to contend only with traffic crossing its desti-
! i nation. But when we concentrate the traffic in our repeaters the amount of traffic coming out of a desti- %

nation is NS, which is not negligible, and must be udded to the crossing traffic, equal to 2MS as before,
in order to get the total contending traffic.

In general, assume each repeater has a range to reach k other repeaters, and, for simplicity, that
. the distance each message must travel on the repeater-repeater network is a multiple of k. The traffic
3 coming out of each repeater is then NS/k. Each contention system will consist then of m=2k+1
repeaters and tic total traffic in it is Qk+1)NS/k=2mNS/(m—-1). Let H be the number of hops
necessary, on the average, in the repeater-repeater level. The capacity necessary for this level is there-
fore

I 2mNS | H ;
C U m= + T 29) |
i Where U, is the maximum utilization of an m—repeater ALOHA system. U,, is written explicitly in

! (26), and substituting we get

A~ -

-
L 2mNS L NS > e2Ns (30)
U, m-1 m

From (30) and (29) we see, even if H is equal to 1, that the repeater-repeater subsystem needs more d
capacity than the entire one-level network! The detrimental effect of concentrating the traffic and !
increasing the contention is more important than the gain in the possible utilization of a finite popula-
tion repeater system. Our conclusion here is, thercfore, that if range is no problem, concentrating net-
work traffic into repeaters wastes communication resources. Introducing repeaters can, of course, be an
improvemen! if their range is much larger than ‘"¢ terminals’ range, and if this significantly 7educes the
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number of hops a message must take.

In a heavily loaded two-dimensional ALOHA network we saw that the optimal transmission
radius is smell. That is, even without repeaters, whenever the traffic is steady we should make our con-
tending terminal system as small and as finite as we dare! Repeaters are not necessary for improving
the utilization cf a heavily loaded two-dimensicnal netwerk, and the extra level they introduce is waste-
ful. Repeaters can bhe very useful, for networks of intermediate burstiness, if ALOHA is used for
terminal-repeater communication and dedicated channels ave used for repeater-repeater commvnication.
For & treatment of such mixed-mode networks see [18].

6. Conclusions

Using ALOHA as an access mode for a communication system consisting of a large number of
distributed terminals is extremely simple and therefore appealing. But a heavily loaded centralized
ALOHA system, in which all messages must reach one common destination, will need e times more
bandwidth than the theoretical best (and impossible!) M/M/1.

ALOHA networks are in a better position. Since messages have various distributed destinations :
the channel can be spatially reused: i.e., various transmissions can successfully use he channel at the
same time if they are separated spatially and do not interfere at their destinations. The contention
between messages is not directly determined by the given traffic, and it can be adjusted by choosing the
transmission range.

By modelling a homogeneous ang isotropic network by a continuum of terminals we calculated
. the optimal transmission range. A two-dimensional ALOHA network need be only Ve times worse
) : than the corresponding M/M/1 network, even when very heavily loaded, as long as the calculated
: optimal range is not too smail to be practical. The calculated range becomes (00 small when only a few i
’ terminals are within range of each other. But the problem of organizing and coordinating a system with 3
' a large number of terminals, which was the original motivation for using ALOHA, has disappeared, and
other access modes can then be uscd to advantage, though we have not considered any in this paper. i

: Since ALOHA networks pay a smaller price for contention then do the centralized ALOHA sys-

' tems it is harder to improve them by reducing coniention. Splitting terniinals into power groups can

improve any ALOHA system, especially when the traffic is split between groups in a good way, but the

. resulting improvement in centralized systems is much more significant than the resuiting improvement
\ in networks.

In a centralized system all messages must reach the station, and must therefore contend for its
ear. A multi-level organization using ALOHA at all levels can improve heavily loaded single-
destination systems by having only a small number of intermediate nodes communicate directly with
the station. Multi-level ALOHA organizations do not help networks, because choosing the transmis-
sion range is a much more effective means for controlling the amount of contention.
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Hiersrchical VUse of Dedicated Channels

Abrtract

We consider efficient organizetions ior communication resources which are uccessed by a large
number of geographically distributed terminals. Developing a model for systems built with dedi-
cated channels, we answer the following questions: What is the role of hierarchies in organizing
large communication nieis? How should a large network be deccmposed into smaller parta?
What cost versus perfcrmance gains can be achieved by such a decoinposition?

Assuming that performance is specified and that the goal is 10 minimize the necessary cost, we
define qualin and burstiness and find the following: Dedicating channels is reasonable when the
traffic is steady (i.e., not dursty), but when the traffic is bursty ihe cost of simple dedicated-
channel systems grows too fast with the number of terminals. By introducing regular hierarchical
structures we show that the cost of bursty systems can be significantly reduced. The optimal
structure must be lalanced, and tha ratio of the contribution of the different levels to both cost
and delay is simply determined by a few key sysicm parametets.

We consider two technologies: line and broadcast. The cost of the best bursty /ine system grows
with the dimensionality of the space in which terminals are distributed. The cost of the best
bursty broadcast system is similar to the cost of one dimensional! line systems and is independeat
of dimensionality. It follows that bursty broadcast systems have an advantage over line systems
in 1wo or more dimensions.

The abuve upply to both centralized systems, in which messages originate in the distributed ter-
minals but ar¢ directed to one common destination, and to networks, in which both sources and
destinations of imessages are distributed.

Organizing a two-dimensional netrork imposes a tessalation on the plane. We compare the
three regular tessalations and analyze the relevant tradeoffs. When using the best number of
levels, as a function of burstiness, icssalating the plane with hexagonal tiles (and forming a tri-
angular network of communication lines) is usually optimal.

i. Introduction

Designing a communication network for a given trafic requircment consists of balancing cost
and performance. Faced with the tusk of anaiyzing networks, we must abstract the relevant features of
traflic, performance and cost in order to arrive at a manageable model. In this paper we develop such a
model and use it tc answer the foilowing questions: What is the role of hierarchies in organizing large
communication nets? How should a large network be decomposed into smaller parts? What cost
versus performance gains can be achieved by such a decomposition? To motivate the abstractions
necessary (o arrive at our model consider the following simple example:

Assume messages originate at m different sources (buffered terminals). Assume that the appesrance of
messages at each source is a Poisson process with rate S/m messages per second, and that the length of
messages has an exponential distribution. Let us chocse the information unit so that the average length
of a message is equal to 1; this is simply 2 convemient normalization, which is eghivalent io measuring
communication capacity in messages (of an average length) per second, instead of measuring in bits per

secorsl. Assume all messages are directed to one destination (computer), which we shall sometimes
call the station.
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Consider the two cases shown in Fig. 1.
(O STATION o
O TERMINALS Q O
O\ 0
o (4]
o//
o ©
0000 %
OO0 OO
o O
CASE 1 CASE 2
TERMINALS AT ONE PLACE TERMINALS DISTRIBUTED

Figure 1. Centralized versus Distributed Terminals.

In both cases all terminals are at the same fixed distance from the station. In case | all terminals are at
one and the same location. They can, therefore, share a single communication channel. In case 2 the
terminals are spread out around the station, and we shall connect cach one to the station by a separate,
individual channel.

How should we compare these communication systems? Having fixed the structure of both
systems, and since the distances from all terminals to the station is the same in both cases, we shall
ignore for the moment the question of distances and cost, and shall characterize both systems by the
relation between the following three parameters:

Ay Total rate of messages transmitted (messages per second)
T Average total time spent by a message in the system (seconds)
C Sum of the capacities of all communication resources used (messages per second)

In order to compare the two systems of Fig. | let us first find the relation between §,T and C that
characterizes each of them.

In case | all sources are in one place and are connected ¢ Se destination by a single communi-
cation channel. Each message will join a queuc at the terminal end of the channel, and when its turn
comes, will be transmitted to the destinution. We thus huve a classical M/M/1 queueing system [I|
with arrival rate S and service rate C (messages per second). The average total time 7 a message
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spends in the svstem (in queue and in service) is given by

1
- 1) :
T c--§ ( :
In case 2 each terminal is connected to the station by an individual channel. If C is the total capacity ’
available, let us connect each source to the destination by a channel whose cagacity is C/m Each mes-
sage will therefore have to pass through one of m identical queueing systems (with arrival rate S/m and 1
service rate C/meach.) The relation between capacity and average time in thiy system is simply 4

1 m
T= Eim=5im ~ C-5 o)

If the communication capacity we use is predetermined, it is natural to compare the delay in the
alternative organizations. In our case, for a given C and S, let T) and T, be the time spent in case | ]
and case 2 of Fig. 1 respectively. Forming the ratio of (1) and (2) we get i

T, 1

= 3)
Ly

The M/M/1 system of case 1 is, with ‘he given assumptions on the statistical nature of message arrival ‘
and length, the best we can achieve, i.e., we pay the only the unavoidable price for queueing. and noth- !
ing more. In case 2 we have the same queueing effect, but in addition pay a significant amount for the

decision to dedicate a part of the channel to each of the terminals. Equation (3) says that a system with

m dedicate¢ channels is m times worse than sharing one M/M/1 channel! For this and other scaling

results see [2]. '

In our simple exampls. T/ T, does not depend on either S or C. But even in the general case,
the ratio of times used to compare two systems is a dimensionless number. It can, therefore, depend
on S and C only via their dimensioniess ratio S/, which is the utilization of the communication chan-
nel, usually denoted in queueing literature by p. When S<<C, we ssy thai the system is lightly
loaded. When S is very near C, we say that the system is heavily loaded. When S 2 C the system is
overloaded and unstable; we shall not treat this case. Both (1) and (2) give the average delay in the
sieady state of a stable system.

Equation (3) compares M/M/1 and the dedicated channels scheme when C and S are given.
How do they compare if T and S are given and we want t0 minimize the necessary capacity? Let C,
and C, be the capacities necessary in cases 1 and 2. Inverting (1) and (2} and forming the ratio we get

Lo sT+1

C, ST+m
It is not surprising that the dimensionless ratio given in (4) depends on S and T only via their dimen-
sionless product S7. We shall call the inverse of ST the burstiness (3] of th: system. When ST is small
(§T<< 1) the system is bursty. When ST is large (ST>> i), the system is steady. When the traffic is
bursiy there are only a ‘ew messages in the system. There is little congestion, and the delay suffered
by messages is mainly determined by the time necessary to transmit them. The communrication
resource is only lightly utilized in a bursty system. When the traffic is steady the communication
resource is heavily utilized and the delay is mainly determined by the congestion.

(4)

Definitions equivalent to our burstiness w.2r~ introduced independentiy by cthers [4,5]. This is
not surprising, since ST is the only dimensionless number one can form with S and T. Lightly loaded
systems are bursty, and heavily loaded systems are steady, so we shall sometimes use these terms inter-
changeably. But we shall use the terms bursty and steady when we wish to stress the fact that Sand T
are given. and that Cis to be determined in the design process. We shall also use the terms bursty and
steady to describe the traffic a given system has to carry.
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Equations (3} and (4) may look very different intuitively, even though they compare the a=ine
pair of systems. If we assume S and T are given and compare the needed capacity we see that C,/C,
depends on burstiness: when the system is very bursty (ST—0) dedicated channels are m times as bad
as M/M/1, when the system is very steady (ST—oo) dedicated channels are glnost as good as M/M/1.
But if we assume that C is given and compare the delay as a function of load then (3) tells us that dedi-
cated channel are a/ways m times as bad as M/M/1. Which comparison is more meaningful?

I a real commercial environment we may be constrained to use a communication channel with
one of several predetermined capacities. Comparing delay will then be the right tool for evaluating
alternative system organizations, and (3) will be more meaningful.

However, for the purpose of this paper, we shall assume that capacity can be freely chosen in
the course of a system design. The client of the design will specify traffic and performance, and we
shall evaluate different designs by the resources necessary in each of them. While this attitude ignores
some of the real-life consiraints, we feel it gives a much better urderstanding of many important techn-
ical issues.

2. Designing Distributed Communication Systems

Why is it that the terminais in case 2 of Fig. | cannot form one queue an¢ use one common
che mel? One nay say that the terminals are distributed ir space, and therefore cannot share 4 channel.
This stawement ic reasonable if we are committed to using lines for communication, bu{ in general it
should and it can be made more precise. While lines connect pairs of points, other communication
technologies have the broadcast property: a transmission made by one t<yminal will be heard by all oth-
ers. Consider the following gedanken experiment: Assume our terminals have a strong empathy and
that, as a result, each one of them senses, immediately and with no error, the fact that another
becomes ready to transmit. Despite being distributed in space such a set of terminals can easily form
one queue and share one broadcast channel. We may say that if perfect knowledge of who is ready to
transmit was available, then being distributed in space would have been of no consequence.

Consider now another gedanken e4periment: There i5 no cmpathy between terminals, but there
is a demon who has perfect knowledge of who is readv to transmit. Assume also that terminals will
transmit only when instructed to do so by the demon, and that these instructions arrive free and
without delay. Then, once again, the terminais can easily share s broadcast channel: a queue will form
in the demon’s head, and the demon will instruct the termina! at the head of the gueue to transmit.
We see from this hypothetical 2xample that it is enough to have perfect information in one place, if
that one pluce could perfectly control all transmissions.

The problem of real distributed communication systems is that the control of transmissions is
distributed, and must be bazed on distributed inforrniation The information that is available at each
place is therefore partial and old. We have no perfect ermpathy and ro cooperative demon. Faced with
this reality people have developed many schemes for deciding which terininal will use which part of the
communication resources at a given time. These schemes, often called access modes, usuelly utilize
some of thz following ideas: central control using preallocation (TCM A, FDMA) or nolling [6), reser-
vations {7.8,9], ALOHA (101, and carrier sense [11].

It woild have been nice to be able {0 completely characterize all possible access modes, and say
which one is best for which range of system parameters. But we are far from achieving such a goal.
We know no completc characterization of access modes. The performance of many of the known
accese modes is extremely hard to obtain in an analytic way because they involve comples systems of
interacting Queues. While it is often easy to evaluate an access mode for a small range of parameters by
simulation, it is hard to use simulation to get insight as to which access mode is best for which range of
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parameters.

Rather than trying to treat the ensemble of all possible access modes we shall concentrate on
. one of the simplest - using dedicated channels. This is reasonrably good when the traffic is stsady, but
bad when the traffic is bursty. We shall assume the communication system has very many terminals,
distributed over very large distances, and ask: For a given traffic and required performance, can the cost
of a very bursty system be reduced by a hierarchical organization® Before trying to answer this question,
let us say how we shail describe traffic, spzcify performance, and calculate cost.

?

%

;, To specify traffic we shall assume m, the number of terminals, is very large, that terminals are
;F uniformly distributed in their geographic region, and that all terminals contribute equaily to the traffic.
f : The reason is that we are interested in hierarchies that arise in the desii.n process, and not in hierar-
: chies that are imposed by the topology and traffic requirements. It is also often true that the uniform
E case is the worst case for a distributed system: if traffic was especially concentrated in some terminals or
E regions then the system would be less distributed. In addition we shall assume different messages
s appear independently. When we treat very bursty traffic the exact distribution of message interarrivals
is irrelevant, and only S, that totai rate of messages, will appear in our formulas.

ST g T A

Delay will be our only performance measure, and ve shall ignore the very important issue of :
reliability. Indeed, only the average delay T will appear in our formulas, but essentially all results will 4
remain valid when the variance, range or distribution of acceptable delay values is specified in addition :
to the average delay. Meister et al {12] propose and analyze a performance measure that can influence
the variance of delay. We shall show later that we can achieve equivalent results by adjusting our cost
¢ measure.

The cost of communication depends on technology. We shall classify the very many technolo-
. gies possible intc two groups: line systems and broadcast systems, and shall assume a cost measure for
; each group. 4

. A line enables the two points at its ends to communicate. The line can be a tight string, a pair
of wires, a coaxial cable, or a light guiding optical fiber. Line-based systems have many advantages, tut .
depend, of course, on a line arriving ai avery point that needs to communic: te. We shall assume tnat

the cost of a linc system consists only of the cost of lines, and that the cost of a line channel is directly i
proportional (o the a-th power of its length, and to the &-th power of its capacity. By choosing 6<1 we !

;' model the economy of scale usually present when building or buying a large capacity channel. Whep i

‘ a <1 we actuglly can tak: into account the cost of =quipment at the ends of the line, which we do nc¢

{ ) consider explicitly.
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The second type of communicaticn technology we shall deal with is that of broadcast systems.
The main property of broadcast channels is, that for b tter or worse, everybcdy within range can talk,
listen and interferz with everybody else; tha: is, they all hear every iransmission. When everybody is
within range of everybody else we have a one hop system - every message can arrive from source to ‘
destination in one hop. If the transmission range is less then the distance spanned ty the terminals we !
have a muiti-hop system. A message may have to be transmitted mcce than once, at first from its '
source and then from intermediate ‘relays’, in order to arrive at its destinatioii. 1n a multi-hop system
it is possible for two different transmissions to successfully use ihe same broasdcast channet at the same
time, if they are not within range of each other, i.e., a broadcast channe! can ve spatially reused. When
choosing a trarismission range we must, therefore, face the following tradeoff: !f we choozs a large
range we shall need few hops, but will cause a lot of interference and monopolize the channel in a2 large
region. We analyze this tradeoff, but ignore the following fact: Range is determined by transmission
power, among other factors, and power is seriously limited when terminals are mobile.
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Whea dealing with broadcast systeris we shall entirely ignore the cost of equipment
(transmitter, receiver, antenna, power source) and consider only the umount of broadcast bandwidh
used as thv cost of the system. The motivation is that tecanology will make the equipment cheaper and
cheaper, but that the bandwidth is now and is likely to remain a truly scarce resource, especially as the
' | ; overall communication traffic grows. We shall assume the cost of a dedicated broadcast channei with
; i capacity C is given by C? and ignore a technology-dependent multiplicative constant. Usually b will e
: ) amaller than one: there is somc cost in bandwidth when a separate channel is created, and wide band
b .
3

channels are therefore relatively cheaper.

The divisior of all possible communication systems into either line or broadcast systems is, of
course, somewhat arbitrary. On the c..e hand, a broadcast transmitter with a directional antenna and
beam can become part of a line syst2~, as the microwave links of the teleshone systam show. On the
other hand, a broadcast system like ALOHA can be implemented on a set of lines [13]. Communica-
tion satellites, 2 prime example of broadcast technology, are actually used by the international tele-
phone comenunity as ‘lines’, ie., for point-to-point communication connecting a single source with a
single destination. We congider both this division into lines and broadcast sysiems, and the cost assign-
ments we made, to be useful abstractions, that help isolate the issue of being distributed, which is our
main interest herc.
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Real systems are built slowly. Invesiments have to be based on esiimates of future demand, 4
and the demand in the futuie is influenced by the existence of the system and the quality of service. ':
We shall ignore this interaction over time, and assume our systems are buili in order to satisfy the
known demand and scrvice reauireinents at a given time.

3. Decomzosition and Resourc. Allocciion ;

: Having spbscified our nerformance and cost measures, et us return to our m equaliy talkative
; terrainais, ali of vhom wish to communicate \vith the single station. Denote by L the ‘typicai’ linear
' dimensicia of ihe region over which terminals are distributed, aud assume a line-based communication
system is built to coniiect all terminals to the one station. Since v.e assume that the cost of every line
i3 proportiona! to the a-th power of its length the total cost of our centralized sysiem musi be propor-
tiongl 30 L The iotal cost must also be proportional to the b-th power of the typical line capacity.
Whe: the traffic is very bursty the typical capacity must be 1/ T (see equation (1) ), and it follows that

T T T ST T A T ey ey e e e

i . the total cost is proportiona; ts 1/T% The total cost D can therefore be written, without loss of general-
! ; ity, as ;
1 : L° 3
. D = = (s}
! ™ |

Cliven our assumptionr: on the cost of individual lines, the dependence of D on L and on T is an inevit-
. sble result of the traffic requirements, i.c., of wanting to communicaie {(across distances that are typi-
celly L) over lines (whose capacity must typically be 1/T.) The f appearing in (5) shows how the sys:
tem cost depends on i*s being distributed. f contains some geometric constants, and a dependence on
m, the number of termiinals. We shall usually ignore the constents, snd address the dependence on m:
How fast does f grow with m? Must it grow ihat fust?

YT PR

s

Assume we have a procedure for designing a very bursty centralizcd communication system,
given m, the number of equally talkative and uniformiy distribited terminals. Such a design procedure
can bc compietely characterized by its f-function, defined by (5).
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Applying a given design procedure to a communication system with very many terminals may
be too expensive. Can we reduce cost by decomposing the system into small parts, and by applying the
given design procedure to ecch part separately? How should we decompose a iarge system and how
should we allccate resources to the different subsystems? We shall start with the latter question.
Assume the cost of the j-th subsystem is given by (5), i.e.,

and that the total system cost is D= ¥ D;. Assume that the delay measure 7 is given by the following
i

weighted average
i

where §; is the traffic carried by the j-th subsystem and 3 is the total traffic. !f we now choose the T; in
order to minimize D given T {or in order to minimize T given D) we get the following cost:

b= s';""ﬁBM ™

/(
where B = Z(les.lbf/)l 2+1)
/

Minimizing tne cost of a hierarchical structure ofter: involves minimizing B given in (7), which
we shall call the B-term.

When resources are atiocsted to subsystems in the optimal way, which leads to (7), we also get
D, ST, LSts Vib+h
D, ST LSS,

That is, the contributions of subsysiems to the delay measure and to the cost are directly proportional
to their contribution to the B-term.

(8)

When our subsystems consist of a single line each Equation (7) is ver; similar to Kieinrock's
optirnal capacity assignment [16], with the foflowing diffcrence: by restricting ourselves to very butsty
traffic we can handle cost functions with anyv b, not just the b=1 case. When the traffic is very bursty
there is also a simple equivalence between modifying the delay measure to T** of Meister et al {12]
and modifying the cost measure by substitutirg &/k for b.

When wri*ing (6) we have assumed that the routing of individual messages does not depend on
the state of the network, i.e., routing is not adaptive. We see that no matter what b is, the B-term is a
concave function of S; and the best routing must therefore result in a tree-like network - it dass not
pay to split the traffic from: a given suurce to a givan destination and route each portion differently.

When the performarice meeasure specified includes the distribution of delay values, equation (€)

may be too strict, since it imposes a similar distribution on 2very one of the subsystenis. Eqnatioa (0)
can then be congidered a heuristic, aad the resulting allocation mauy be subaptimal.
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4. Regular Hierarchical Structures

Having decomposed a communication system, equation (7) gives a way to allocate resources 10 |
its various parts. We do not know wkich is the optimal way to decompose a large system foi1 our goal o4
: . of minimizing cost, so we shall use another heuristic. Tc introduce it, consider the following two-level '
1 structure: Assume the m terminals are uniformly distributed in a region of n-dimensional space, and
. divide this regicn into £ congruent regions. Place a concentrator in the middle of each region, connect »
b o all P concentrarors to the station according to a given design procedure, and connect all terminals in a
given subregion to ‘their’ concentrator according to the same design procedure. For simplicity of our
; ! formulas we shall assume that all subregions have the same shape as the original region. and will ignore
‘ the constant coeflicients that depend on this common shape and on the dimensionality.

G

L i

é We shall cali this hierarchical system a two-level regular hierarchical system, where the woid

b ' regular refers tc the fact that all regions are of the same size and shape, and that all concentrators are
placed in the middle of thkeir regions. We shall call the communication subsystem connecting concen-
trators to the station the top level, and the subsgystem connecting terminals to concentrators the bortom

; level. The top level consists of a network with the P concentrators acting as terminals, and the bottom

‘ : level consists of P actwoiks with 12/ P terminals each.

Let L be the typical linear size of the original n-dimensional region. The tvpical linear size of
each one of the P subregions is L (1/P)Y" and the total traffic arriving at each concentrator is S/ P.
Applying (7) to both levels we find that the contribution of the bottom level to the B-term is

i/(s+ 1
P[Lﬂ(l/P)a/"(S/mbf(m/P)] i

d Where we have shown explicitly the dependence of / on m/P, the number of terminals in every subre-
gion. The contribution of the top level to the B-term is

s+ -
|Lestrp) i
Adding gives the B-term of the two-leve! regular hicrarchical system; "
B = [Lasb} l/(b“)lf(P) 1/(a+1) + P(l—a/n)/(b-H)f(m/P) l/(b+l)] )

P ; Which P will give the least cost two-level system? Are two levels better than one? The answer to the
second ausstion will folluw from the answer to the first, since when P=1 or P=m the two-level system
reduces to a one-ieve! system. This is reflected in (9) since f(1)=0 : when we have to conngct one
terminal, which is ‘uaiformly’ distributed over its region, to a station in the middle of the region there
ig nothing to do, and no cost is incurred.
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To find the best P that wiil mininiize 2 we must say something abo::t the ffunction. For sim-
plicity assume that when m is large the following is &« good approximation:

D e TR M P e v

; Sf(m) = mt (10) i

. ; Assumirg that P satisfies m>> P>> 1, so that both P and m/P are large, we can substitute (10) into i
A g (9) and get 4
E 1ib+1) /(b4 1) (t—a/nV/(b+1) / ) 4
: | B = [L"S”] (P" 0 4 pli-a/nV/tb+h) (py/ pyaltb+] (tn ,
. ¢ i
E ‘ Ci¥erentiating B with respect 10 P we see that dB/dP =0 when 1
3 .J.. ! gtt\ps = [g— | +a/nl"""(m/P)'P"""' a2 i
' ; substituting the P determined by (12) into (11) we sec that the cos! of the iwo-level sicvcture, optim- _‘%

ized with respect to P, is proportional to m*, where

N
T . - ¢

34

__}..—
P
i3
\




T

SR pp—

i
b
[
|
:!

F4 AR SN PR ML < s, of A Aneg . st et b oo

e R S g RS

— 0 KT -

KL I

R

RNk e b - i ottt Bttt

-5
2¢—-1+a/n

When g>1—a/n we have g > h. That is, when using the best P, as given by (12), we have a two-level
structure whose cost grows with m more slowly than the cost of the one-level structure. When
g>1—a/n and m>>1 our use of the approximate (10) is consistent, since our best P does satisfy
m>>P>>1. We can summarize the above discussion of two-level regular hierarchical systems by the
following:

h (13)

Theorem I: A design procedure whose cost is proportional to m* where g>1—a/n can be improved for
large m by applying it separately to each level of a two-level regular structure. The best P (number of
groups) is given by (12). The cost of the resulting two-level structure is proportional to m*, where h is
given by (13). When the best P is used, the contribution of the two levels to the delay, to the cost and
to the B-term satisfy

Tlup - Dmp Brop - _&:l"‘a/n (]4)

Tl. Dl BL g

Proof: Substituting (12} in (11) we get B,/ Byyom={(g—1+a/n}/g. The other two equalities are true
whenever capacity is optimally allocated, as shown in (8).

o

We shall paraphrase (14) by saying that the optimal two-level regular structure is balanced. The
contribution of both levels to the delay and their share of the budget must be in the proportion given
by (14). The right hand side of (14) decreases when g decreases. P also decreases with g, and there

will be less groups in the top level. We may say that when g is small most of the system migrates to
the bottom level, anc that when g is smali enough two levels become unnecessary.

Example 1: When the original design procedure consists of building a star network we have g=1, and
(13) reduces to h=n/(a+n). That is, the cost of the optimal regular two-level star system is propor-
tional to m"/‘avn, while the cost of a one-level system is proportional to m. When g=1 (14) reduces
to

Tmp - Dmp a

Tbullum D bottom n

and we gel that the two levels must be balanced in a way that depends on the dimensionality of the sys-
tem and on the economy of scale of long lines, but is independent of the possible economy of scale
involving capacity.

(]

If two levels are good, will more levels be better? Equation (13) already contains the answer:
Decomposing a given system into two levels and applying the original design procedure to <_... 7on be
considered as a new design procedure. Applying this new procedure to two levels is equivalent to
applying the original procedure to four levels. When g> l—a/n it follows from (13) that A>1—a/n
and therefore four levels will be better than two when m is large enough. In general, let g, be the
power of m characterizing the resulting cost and f-function when the given design procedure is applied
to 2/ levels. Equation (13) can be rewritten as

g?

1)
g—1+aln
where gy is the power of m characterizing the direct application of the given design procedure to one

level. 1t is easy to sec that when g>1—a/n the sequence {g;] is monotonically decreasing and con-
verges to 1—a/n.

&=
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The argument of the previous paragraph has the flavor of an existence proof: It shows that by
having enough levels the cost can be made to grow as an exponent of m arbitrarily close to 1—a/n. As
m becomes larger, using more and more levels is justified. What is the best number of levels for a
large but fixed m? To answer this question we must consider the constant coefficient multiplying m"
This constant, which was igriored unti} now, grows with the number of levels, and therefore tempers
the trend towards more and more levels.

The f-function and cost of a system consisting of r levels, each of which is built according to a
given design procedure, can be calculated explicitly. Let P; be the number of terminals per group in
the ith level, starting from the top. Rather than trying to optimize the overall structure directly, note
ihe following: Every two consecutive levels in an optimized r-level system must be optimal as a group
of two-level systems. Equation (12) can therefore be rewritten as

gb+lpig—l+a/n_ [8" 1 +a/n]b+lpi+lg as)
and (12) can be generalized into
B,
B4\
where B, is the contribution of the ith level to the B-term. From (15) and (16) we get the following:

=1—-(1—a/n)/g (16)

Theorem 2: A design procedure for n-dimensional centralized systems whose cost is proportional to m*
where g >1—a/n can be improved for large m by a multi-level regular organization.

When 1—-a/»#0 the best number of levels is given by

r(b+1)/g In(g/(g—-1+a/n)) = (1-a/n) in(m) (amn
and the cost of the system, when using this #, is proportional to
m(l—a/n)/(b+l)_l b+l (18)

When 1—a/n=0 the best number of levels is given by

-
r=34 in(m)
and the cost of the resulting system is proportional to [/n{m)]®*'. In both cases, when the optimal
number of levels is used, the number of lines in all groups at all levels is the same, and must therefore
be given by m'/".

Proof: See appendix.

When a is smaller the best regular hierarchizal system has fawer levels and leads to smaller
improvements, since it is harder to save by shortening individual lines. When b is smaller the best sys-
tem has more levels and leads to larger improvegients, since common large capacity lines become more
economical.

Example 2: Let the given design procedure be to build a star network. That is, g=1. Let a and b be
equal to 1. From (17) we see that the cptimal number of levels for a two-dimensional system is given
in this case by r =log,¢m, and that we should have 16 lines in every group. The cost of the resulting
system is

z—l‘f‘m'/‘—llz

where we use = to denote ‘is proportional to’.
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Consider the regular hierurchical systems built with a star network at each level. Wiat will be the effect
on cost iff we change the specification of the allowed delay variance? Consider two extreme cases: In

. the first, only the average delay is specificd. In (hc second, let us assume that the average delay

suffered by messages from any terminal in crossing a given subsystem is the sarue for all terminals.

The comparison between these two alternatives depends on geometric constants, which we have sys-

tematically ignored until now since expressing them analytically is usually impossiblc. To simplify the

geometric calculations assume, in this section only, that the region over which terminals are distributed
is en n-dimensional sphere, even though a sphere cannot be divided into equal parts similar to itself.

Consider first a one-level star network with only the average delay specified. The B-term can be

immediately derived from (7). Assuming the number of terminals is large and approximating sums by

integrals we get

: H - n(b+1) by o b+
' ; 4 n(b+|)+alms L ]

; and

1
D, = B b+l
AT s

where the subscript *4° stands for ‘average’.

s ey

! "When a uniform delay is specified D can be written directly, since all channels must have the

surne capacity, and we get

Dy = 2|4 L) - Bt

{ v = g |Average of L, T a+n
v re the subecript ' U stands for *uniform’. Forming the ratio we get .
P, b+ f

: Dy _|nte+D+a n (19)

. : D, n(d+1) a+n

Equation (19) was derived by considering one-level systems, but it is valid when comparing r-level sys-
tems and when comparing systems with the best r, which is independent of the delay distribution
specified.  Equation (19) shows, therefore, the additional cost of demanding a uniform delay versus
demanding only an average delay.

How large is the ratio given by (19)? [t has its largest value when a=b=n=~l, and is then
cqual to 9/8. That is, if a system with only the averuge dclay specified is not acceptable, the delay can
be made uni® w at e itional cost of no more than 12.5 per cent!

AT S P AT, gy e i e LT
gy
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5. A Lower Bound?

Theorem 2 shows that by using the hecuristic regular .hierarchical constructions the cost ofvery
, bursty centraiized dedice” ~ line systems can be made to grow only slightly faster than m'~%/". (The
: growth of cost with m ca pounded frecm above by an exponent of m arbitrarily close tc 1—a/n.) Our
‘ regular hierarchical stri  -.cs have the following properties:

R

(n A concentrator is placed in the middle of each group. :

]

{

. (2) The terminals are divided and subdivided into equal groups. ;
1

(RY} Every message crosses the same number of levels on its way to the station. 1

These properties were adopted in order to simplify the analysis of regular systems, but they do not lead
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to the best, i.c.. least cost, system. [t is guite c'ear that the concentrator should not be placed in the
center of its group but closer to the station. H is auite possible that groups further away from the sta-
tion should be larger and that messages coming from afar sheuld cross more levels on their way to the
stution. (This will naturally occur in regular systems too when we note that concentrators will be colo-
cated with some ol the terminals, as shown in Fig. 2).

CO0O000CCO00OQO0OOOdO00COCOCOO0O0COOD0

Figure 2. Hierarchical Organization of a One-Dimensional Dedicated Line Syste:a.

Some specific heuristics that perturb the regular structure slightly were analyzed in 131, but only a con-
stant improvement was obtained  We suspect that no system will have a cost growing more slowly with
m than m'~9/" (See also discussion at end of section 8.).

6. Dedicated Broadcast Channels

In previous sections we suw that a hierarchical organization cin signilicantly improve the perfor-
mance of a system based on dedicated lines, especially when the system is bursty. The basic cause for
improvement was that instead of having long lines with a small capacity dedicated to cach individual
terminal we could use short individual lines. The iong lines were shared by more traffic, and the capa-
city invested in them could, therefore, contribute more to improving the performance.

If the communication resource we have is a broadcast channel, whose cost depends on capacity
only, it seems that channels used for short distances are just as expensive as those used for long dis-
tances. So how can a hierarchical organization hecip? The crucial fact here is that broac-ast capacity can
k2 reused spatially. That is, it can be used independently and at the same time in two or more sepurate
areas. A long range transmission prevents others from using the channel in a large region, and this
distance-related ‘cost’ will be explicitly accounted for in the capacity allocation process.

Let us, once again, create a two-level regular hicrarchical system by dividing the m terminals
into P, groups with P, terminals in each. We shall give cach grouy: a concentrator, but shail now call it
a repeater, this being a more common name when radio networks are discussed [14]. Dedicate.a cupa-
city C; to every one of the repeater-station communication subchannels. Dedicate a capacity €, to
every one of the terminal-repeater communication subchannels and assume that these subchannels can
be used by every one of the groups 10 communicate with its repeater, without any interfcrence from
other groups. That is, we assume spatial reusc can be done perfectly, without any wasie in capacity or
degradation in performance. This i> a reasonable assumption if, for exampie, each of the terminals has
a directional antenna pointing at its repeater only or if the repeaters are separated by hills. so that cvery
transmission is heard only by the repeater to which it is meant. Fig. 3 shows our madel for this two-
level system.
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Figure 3. Dedicated Brosdcast Channels in » Two-Level Organizstion.

‘When the traflic is very bursty the average lime spent in this two-level communication system
is given by

1,
T=HE* e

whore k is a constant depending on the scheme used for splitting a chunnel into dedicated subchannels.
(For Fraquency Division Multiple Access k=1, for Synchronous Time Division Multiple Access with m
subchannels, k=(m/2+1)/m). The cost of this two-lcvel system is

D= F\C'+ PP
Qur design task is to minimize the necessary budget D, when 7T and S are given, by cheosing
') and C,, and by choosing P and P, subject to ”,Py=in.

dy symmetry it is obvious th&t when m>> 1 and two levels are better than one then the best
choice is P= P, and (= C,. That is, the best two-lcvel regular hierarchical broadcast system must be
oulanced. Using these best values for P,,P,;,C, and C, we get

b
D k®
l b

2b+|ml/2
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The generalization to - levels is immediate. The best r-level regular system must be balanced.
That is, Py=Py= - - =P, =m'" and all individual channels at all lcvels have the same capacity. The
relationship between cost and performance is

k*|’
D= = ph\ e

The best r is easily found to be equal to In(m)/(b+1), and when this number of levels is used
we get that for sil i P, = ¢®*! and that
b+1
Al——g——ln(m)l (20)

b+l

I3

k
D=|%
|
Kamoun [15] found similar results when optimizing hierarchical communications networks with ather

objectives.

If spatial reuse is not perfect and there is some interference between groups we have to modify
our formulas slightly. Assume the groups &t ail but the top level can be colored with ¢ differeni colors
so that no two groups of the same colors at the same level interfere with each other. In an r-level we

i - _l_ ._l_ e _l_ - b by ... Iy s
can now write T = k C + G + + o and D = P\, +q{P;C; + +P.Cr } Minimizing

i i k‘b b+ i) /(s+1) Nbrins+r
D by choosing C; given T we get D = —fl (P, + [qul O +qu’l | The best

P; satisfy Py=qP;= - - - =gP, and using thesc best values we have
Mk e
D=3 r“'[mq'"'] Qn

We expect ¢ to be a small intoger. When m and r grow (21) will give a total cost almest ¢ times greater
than that given by (20). But in both cases we sce that when using dediceted broadeast channels and the
best number of levels the cost of a very bursty systern grows like [/n(m) 1, and is independent of the
geometric dimensionality of the system. The cost of regular hierarchical line networks, given in
Theorem 2, depends very much on the the dimensionality of the space in which the terminals arc dis-
tributed. It seems, therefore, that dedicaied broadcast channels have a significant advantage over dedi-
ceted lines, when building large bursty sysiems distributed in two or more dimensions.

7. Hiererchical Organization of Non-Bursty Line Systems

So far we have dealt only with extremely bursty systems. Can a hierarchical organizution
improve the performarnice of systems that are not bursty?

To answer this question for line networks we have to solve the capacity assignrent problem
when the traffic is not extremely bursty. This is almost impossible to do explicitly unless the cost of a
line is directly proportional to its capacity, which we shell assume in this sectior. (That ic. b=1.)
Another greatly simplifying assumption we adopt is the independence assumption 116]. According o this
assumption we analyze the network as if the length of each message is chosen and rechosen indepen-
dently, at each step along its path, from an exponential distribution; and as if arrival ¢ messages at each
line is a Poisson process independent of message length, Let C,,L; and S; be the capacity, iength and
traffic of the ~th line. The average message delay in gelting across the ~th line is then modelled by

T = -E,—l—- and the source-destination delay, averaged over all messages, is T=1S,;7,/S. The cost of
LT ,

the ~th line is D;=C,L% Minimizing the wtal cost D =21D; while T is given by choosing C,. or
minimizing 7 while D is given, we get ihe following solution for the optimal capacity assignment (16
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; where

)2

i - D=FS,L" \!,_|2\/371.,'l (23)
: i ‘ '

and

2
D, - == TVSL
ST|%

A certain minimum budget is necessary for carrying the given traffic, even if we are willing to tolerate a
very large T. D, is the excess budget, invested in order 10 make the delay finite.

et o i e
v X

P R o Te e

We shall now consider in detail the case of one-dimensional centralized systems, in which the
cost of a line is directly proportional to iis length, (i.c., =1 ). Let our m terminals be equally spaced
on a line scgment of length L. and let traffic be evenly divided among them. If we create a one-level
star network (i.c., connect every terminal to the station by a direct and private line), assume that
m>> | und substitute integrals for sums, we get from (23) that the cost of this onc-level system is

- L
a

e e

., 3m
S+ 5T (24)

What would the cost be il we could have used a single line serving u a single M/M/{ system?

D

g s

tf we have the sume load S, and the averuge distance a message has to travel is L/4 as above,
then in order 10 get the same T from an M/M/1 system our budget will have to be

y—
b R o v b 7 TR AE N e

L c
. D-~2—|S-r—7—,l (25)

E——

Delining the quality Q of a system to be the inverse ratio between its cost and the cost of the best pos-

sibic M/M/1 system, and dividing (25) by (24) we get that the quality of the onc-level star system is

{(for m>>1) :
0- _ST+1

ST + 8m/9

P YT T3 By A e R

ST TR ST T
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i

: Consider now the regulur two-level system with P, equal groups and P; terminals in each i
: ; group. Assuming that the star network is built at both levels, we get from (23) the following relation ;
p S betwesn total cost and performance of this two-tevel system

L | 2L (v 2

D= £50+3-) + 22 [Pl + P2 | (26) |

; 4 T : ]

K For a given S and 7. what should P, and P, be 10 minimize D? Treating P, and P, as real variables we . j

: sce that the optimal P, and P, are related through - 3

i P | i

P i ﬁml an

L ) i

L% B

4]

U . [ - S e e e e e ol

i ST R S G S TP IR . - LN . ’4
L |



e

s —re e R e ———
- - Y= e e v rv——wp'?'\'_"'_:‘!'{m‘nvﬂm\* Lis ok dail i LR
> 8 SR PR v

oo SR

[V ISR S [

Let D, be the amount of money invested at the concentrator-station ieve! (the top level) and
D, be the amount invested ut the terminal-concentrator level (the bottom level). Let T and T, be the
average time a message spends in the top level and the bottom level respectively. From (23) and (27)
we get the following

D, - LS/4 T, o ST
D,- LS/G@P) T, I+ 3 m (28)

The first equality is not specific to regular systems. It follows directlv from (22) that whenever we con-
sider two sets of lines in a communication system with an optimal capacity assignment, the ratio of
their contribution to the average delry is equal to the ratio of excess the budgel invested in them. The
second equality sign shows how both of these ratios depend, in a two-level regular system, on ST,

When ST—0, (27) shows that P;=P, and (28) is then just a specific case of (8); 2very regular
two-level system must be balanced when bursty. When the system becomes less bursty P/ Py, T\/T,
and D/D, grow. There are more branches than leaves per branch, more of the budget is invested in
the top level, and the message spends more time in the top level. When ST becomes large enough,
i.e., the system becomes very steady, we get from (27) that P, is less than one! This means that for
large enough ST a one-level system will be better than a two-level system. Our optimized two-level
system is trying to achieve the one-level performance by ‘eliminating’ the unnccessary bottom level, or

at least by lessening its effect.

r-level regular systems can be optimized by applying (27) and (28) to every two conscculive
levels. As an example, let us solve the three-level case.

A three-level regular system will have P, branches at the stem, each of which splits into P,
twigs. each of which carries P; leaves. The two top levels can be considered as a two-level regular sys-
tem with PP, terminals. The two bottom levels can be considered as a set of P, identical two-level
regular systems with P,P; terminals, each with a total throughput S/P,. P,.P; and Py must satisfy

PyP,Py=m

Applying (27) 1o the two top levels and 10 the two bottom levels we get

Poly, 9 8T
P, 8 PP,

Py )49 STy
P, 8 P PPy

where T\, T, and T, are the average times spent in the top, middle and bottom level, correspondingly,
and they satisfy
' T\+Ty+T,=T

Applying (23) to the two subsystems, we get

Il_ £I_ /2
T, P,

2
r, | P 1]
T.! PJ
We therefore have six equations for six unknowns. While we do not have an analytic solution for
them, & numerical one is easy to obtain.
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Fig. 4 shows the cuality of the one-level, two-level and three-level regular systems for 1024 ter-
minals. When the traffic is very bursty the three-level organization is better. When ST grows its
advantage becomes less pronounced, and if the curves in that figure were drawn fine enough we could
huve seen that the two-level system and then the onc-levei system takes over. Fig. 5 shows, for a three
level organization, the ratio between the time spent in every level wird one third of the total time spent
in the system. Fig. 6 shows, for a three level organization, the ratio between the number of branches
in every fevel and m''. In both of these last two figures, the convergence of all three curves to a com-
mon point when ST—0 is a manifestation of the balunced nature of bursty systems under optimal capa-
cily assignmant.

Multi-ievel regular systems arc much better than the one-level system when the traffic is
bursty. Why do they become progressively worse than the one-level system as the traffic becomes
steadier?

'n the regular systems the concentrators are placed in the middle of their group. This means
that some messages will take a route which is longer than the direct distance from their origin (o the
station. When the traftic is bursty, this effect is negligible compared with the gains resulting from shar-
ing the long lines. But when the traffic is steady, sharing leads only to a small gain, and the extra dis-
tance travetled is significant. When ST is very large, we see by comparing (24) and (26) that the two-
level regular system costs LS/ (4 Py) more than the one-level system. This extra cost is a direct expres-
sion of the extra distance travelled. Half the terminals, i.c., those terminals whose concentrator is
further away from the station than they are, will have to travel an extra distance equel to twice the dis-
tance 10 their concentrator. The average extra distance (ravelled is therefore simply the average
terminal-concentratlor distance, which is equal to L/(4 £)).

We can decrease the extra distance travelled by placing the concentrators nearer to the station. Let us,
for simplicity, adopt the policy that all concentrators will be placed so that a fraction 8 of their group
will be on the side near the station. In analogy with (28) we get that the cost of the two-level system
built with this policy is

D - % si1+apyr) + & g (29)

==

where
B = % 2P + % lﬁ““ + (=¥} /P,
When 8= 1/2 this equation reduces, of course, to (26).

For u given valuc of ST, which Py, P, and 8 will give the least cost system? For a given £,
linding the best P, and P, is easy, and the best 8 can then be found numerically. As is intuitively
clear. for bursty traffic the best 8 is cqual to 1/2. When the traffic beccomes steadier the best 8
becomes smal'er, and when the traflic is extremely steady the best 8 s equal to zero.

1t is interesting to note that, for any given 3, the sysiem with the optimal group size obeys a
balance principle: The excess budget is invested equatly in the two levels and the average delay in the
two levels is the same.

When =0 the system has a nice property that we formalize thus: A co.nmunication system in
which the length of the route taken by any messape is equal to the direct distance {rom its source to
destination will be called & go-forward system.
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Figure 4. Quality of Non-Bursty Regular Syswems.
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Substituting 8=~0 in (29) and searching for the best P, and P; we see *hat the cost of the best
two-level go-forward system is

~eltcy 8 L -
D y + g T Yim 30)
Comparing (30) tc (25) we see that, for large /m, the two-leve! go-forward system is better than the
one-level system for all values of S7. But when the system is very steady, there s very littlc to gain by
introducing a two-level structnre.

Fig. 7 shows the optimal 8 es a function of S7. When the tra¥ic is bursty we shouid use regu-
lar systems {(8=1/2) and as ST grows B becomes smaller, «nd the best sysiems wi'h & very steady
traffic are go-forward systemis (3 =G). Rut Fig. & shews that the idea of choosing the best plaze fur the
concentrators as ¢ Yunction of ST is aimost irrelevant! Fig. 8 shows the cost of the twe-level regular
system, the two-lcvel go-forward systern and the ore-level sysiem as a function of ST. The cosis were
normalized, for each value of ST, Ly he cost 0. the two-leve) systein with the besr caroentratcr nlace-
nent for that ST, as given by (29) when B is chesen to min‘mize D. Assumae ws huve to design a sy's-
tem with a given ST, and conzider the folloving decision: we shall use .he regular two-level system,
with the optimai nuw.aber of groups for the given ST as long as it is batier than the one-level system.
Otherwise we shall simply use the ore-leve: systern. From Fip. 8 we see thet if we foilcw this sro-
cedure, instead of trying io find the *wo-level system with the optimal routing policy, then our expanses
will be lerger by at most 1% ! A similar conclusion applies tc networks [3): If the one-level system is
not good enough we may consider only regular muiti-level systems, and lose almost nothing.

8. Dis:ribated Dedicated-Lin2 Networks

Unil now we have caly deali with tre centralized system case. That is, the sonices of massages
were distributed, but all raessages were dirscted to one destination, i.¢., the station. We shall now tegin
irezting the case of communication systems with distributed destinations, which we call networks. When
analyzing networks we shall be able to use many of the results obtained for centralized systems. To see
how, consider first one-dimensional networks built with dadicated line channels.

Assume terminals are located a. fixed interv.is along our one-dimension.i networks, and let /
be the distance between any peir of nearest neighbors IZaciy terminal wishes to communicate with all
cther terminals. The traffic of messages hetween any tvo terminals is a Foisson process, whose rate
depends only on the distance between terminals, and not on their identity. That is, all terriinals are
identical in their statistical pronerties. We need the distribution of distances iravelled in order to com-
pletely specify the traffic. However, intost of vur results will depead only on N, lys average distance
travelled.

Let as assume thot our network is ‘infinite’, i.e., its total size (s so much larger than N that an
insignificant fraction of' terminals are affected by the boundaries of the network. it makes no sense o
talk about the totai iraffic carried, sv let S, denote the traffic coming cut nf a ini? length of tac network.
D, wiil similatly denote the budget invested in a unii length of (he aetwork.

Our motivation ror choosing gn eniirely unitn-m universe may :i1ow be restuicd: IF some iermi-
nal had an especially urge comm:usication requirement, or if it was svpecially centra! in some sense, we
would rety-ally reat it in a special way wher. degigning a good system. We, however, are interested in
the diffeientiztion beiween terminalz that appears v-hen hie.archies a~e bua ir an eantirely uniform
environment, evsn though no terminal is special to be=in with.
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Consider a network in which each terminal is connected to its nearest neighbor on each side, us
shown in Fig. 9.

TN N Y
/‘\/‘\_/ \_/\\. /\

Figure 9. The One-Lavel One-Dimensional Network.

Let C be the capacity given 1o each line. We shall call this nctwork the one-level network. Every mes-
sage goes, on the average, through N// lines on its way from source to destination, und the traflic in
each line is NS,/2. Hence, the average message delay is given by
T = NI
C—-NS,/2
Assume that the cost per unit length of a half-duplex line is equal to its capacity, i.e., a=b=1. To cal-
culate the budget per unit length necessary for satisfying a given T and S, via the one-level systein, we

solve (31) for C as a function of N, S, and T, and then multiply by two, since every unit interval has
exactly one line carrying traffic in each direction. The result is

D, = NS,+2M/T (32)

where M=N// is the number of terminals contained in the average path.

(31

It seems that NS,, the traffic coming out of a portion of the network whose leagth is equal to
the average distance travelled, is a natural traffic measure in a one-dimensional network. (After ali, S,
has the dimensions of traffic per length, and what other natural length except N do we have to multiply
S, with in order to get something with the dimension of traffic?) The natural dimensionless parameter
we shall use to characterize the traffic is MS,7. When it is small we shal! call the traffic bursty, and
when it is large we shall call the traflic stcady.

Let us double the number of terminals per unit length, while keeping the traffic per unit length,
and the average distance travelled by messages constant. Each terminal will now generate half the
traffic a terminal generated in the original system. The new network has the same N and S,. but M
became twice as large. M plays in (32) the same role that m played when we discussed ventralized sys-
tems. It is a natural measure for the network being distributed, and characterized the extra expense
incurred because terminals are not all at one place. We conclude from (32) that the fact that the net-
work is distributed poses no problem when the traffic is steady. (When NS, T>>1 the second term in
(32), which is the only one that depends on M, is negligible compared with the first.) But when the
traffic is bursty, the system cost is essentially proportional to M, i.e., the cost is then strongly dependent
on how distributed the system is.

Caun hierarchical organizations help nctworks? Can we use concepts introduced previousty for
centralized systems to characterize good hierarchical networks?
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9. Hierarchical Line Networks

Consider now n-dimensional networks in which the cost of a line is, once again, equal to the
' product of the a-th power of its length times the &-th power of its capacity. Let N be the average
; source-destination distance to be travelled by messages, and assume the size of the networks is much
larger thun N, so that cdge effects can be neglected. Let M be the number of terminals in an »
g _ dimensional cube of size N. The volume occuried by every terminal has therefore a typical linear size
_ equal to N/MV*,

o e e

Let us form a one-leve; »ork by connecting every terminal to a small nuraber of near neigh-
bors. The typical line length is N, 5''* and every message typically goes through M"" lines. The cost
per unit volume is therefore given by

N
Mlln

M AN pmiin b Na-n
D, = _N_. - Mrtbd—alin

T T

To build a hierarchical system we shall introduce stations, connect every station to a few of its
ncar neighbors, and assume messages are routed thus: Every message will go from its source terminal
to the nearest station, from it to the station nearest its destination using the inter-station lines, and
from that final station to its destination. Let L be the length of the typical inter-station line, and let
1/L" be the density of stations.

i ; When networks are very distributed (i.e., M>>1) a good placement of stations will usually
satisfy N>>L>>N/M"" We shall call the inequality N>> L the assumption of long distance travel
* : and consistently usc two of its implications: The portion of traffic that can rcach its destination without
- getling to any station is acgligible, and the average line of sight distance travelled by a message from
;T the station near its source to the one near its destination is approximated well by V. The assumption of
long distance travel allows us therzfore to ignore the distribution of distance travelled. Considering this
distribution is of no importance when optimizing a multi-level structure with M>>1 [3].

g e o

If we assume that every terminal is connected to its station by a direct line we get a two-level
system. Using the assumption of long distance travel we can calculate its cost thus: Let 1/T, and 1/T,
be the typical capacity of lines in the inter-station (top) level and the terminel-station (bottom) level
respectively. A typical message takes 2 hops on lines in the bottcm level and N/L hops in the top level
(ignoring a small geometric constant.) The average time a message spends in getting from source to
destination is therefore

R T

~ N
T= T+,

e e b b e em e T 3

v Let there be p terminals per station. The typical length of lines in both leveis is L, and the cost per
: ! unit volume is therelore

PPN

~ M

N d a
a ' Du -~ 'LL+ L
: N

pT T}
minimizing £, by choosing T\ and T, given T we gel, in analogy to (7),
'
. : ~ M L° 4
| T T
s J
'
|

where B = (N/L)¥ 61/ pl/tb+1D 4 b/1040)  The p that will minimize D, must satisfy
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b+
(M/p)t'n= 2% (33)

n+b—a
a

When this best p is used we have, independently of the geometric constants neglected when writing
(33), that ‘

Dmp - Bmp - a
Dbrmom Bbam)m ntb—a

(34)

N -
D, = ..._TTM(M;- a)/{b+n)
Equation (34) shows, once again, thai the best two-'evel system is balanced, but the optimal
investment ratio for networks, given in {34), is different from the optimal investment ratio in central-
ized systems, given in (14).

r-level networks, with r—1 levels in the terminal-station pait, can be solvad by applying (33)
and (34) to the top two levels, and by applying (15) and (I16) to any other two consecutive levels. But
the network with the best number of levels can be more simply characterized by applying Theorem 2 to
the terminal-station part, i.e., by assuming that every one of the centralized systems connecting termi-
nals to their station has the best number of levels. Assume that the inter-station distance is L and that
the number of terminals per station is p. When a# n we get from (18) that the cost per unit volume of
the terminal-station levels is

.l._L_a (l—a/m)/b+1) _ bl -
L" TS lp o l] 3%)

Using pN"= ML" to express L in terms of p we see that when p>> 1 this cost is a slowly growing func-
] 8

tion of p. proportional to p?/" "lp“ salmiheD) ll The top-level cost is, when p>> |, a slowly

decreasing function of p, and the best p is therefore of a magnitude similar to M. When the traffic is
very bursty and M >>1 the cost per unit voiume of a network with the best number of levels can
therefore be roughly given by

NG""

Tb

Continuing the discuision of a possible lower bound for the cost of line systems started in section 5 we
can say the following: If centralized systems existed whose cost grew more slowly with p than p' ¢/*
then instead of (35) we would have that the cost of the terminal-station levels is a decreasing function
of p. The overall network cost would then be a decreasing function of p and of L and the best L will

satisfv L >> N. While not impossible, it is viry strunge that the best network will force a message to go
to a station that is much further away from its source than is its average destination.

D, = Mi-aln {36)

In analogy to (36) one can see [3] that the cost of very bursty broadcast networks and of one-
dimensiona! line networks is proportional to [log (M)]1%*! and troadcast channels are once again supe-
rior to lines for a bursty system distributed in more than one dimension.

10. The Geometry of Networks
In deriving (36) we neglected various geometric cons'ants, since we wanted (o show in the sim-
plest possible form how the cost of very bursty networks depend on system parameters. {While (36)

does not contain §,, it is valid only when N"S,T<<1.) How will the geometry of the top level
influence the cost of networks? We shall treat only the case of two-dimensional line networks.
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It is well known [i7] that there are exactly threc regular tcssalaiions of the plane: i.e., three
ways to cover the plane with identicsl regular polygons. If we place a station in the middle of each tile
and connect it to its nearcst neighbors we get the thiee networks shown in Fig. 10. We shall call them
tive square, triangulor and hexagonal network, where the name applies to the regular polygons creuted
by the lincs in the network. Note thet we do not draw the riles (the regions around euch station), but
the duat graph showing the communication lines between adjacent stations. For exumple, tessalating
the plane by hexagonai tiles produces a beehive-like structure which leads to our triangular networks.

Is thare a common basis for comparing these three tessalations? For a preliminary compartison,
let us assurae thet all traffic originates at the stations, and is destined to many points in the plane, not
necessarily to other stations \n the naiwork. Every inessage will use the given network to arrive at the
node closest to its destination. We shall not consider how the final node delivers each message to its
exact destination at this time. Let us al.o assume that the distribution of traffic coming out of a node
hus a radial symmetry, and that the average line of sight distance from the source node to the destipa-
tion node is N. The average distance actually travelled by a message will be larger, because there may
not be a line directly to the neighborhood of its destination.. Assuming the average distance travelled is
much larger than the inter-node distance we can say that the distance actually travelled is 8N, where &
is a characteristic constant for each of the possible networks.

In the square nctwork we have 6= -——f (lcoso| + Ismol)do« e 1.27. A similar simple cal-
2 r-()

culation gives that in a triagngular network 8=1.10 . For the hexagonal network we used a computer

program to find that 8 is approximately equal te 1,30,

Let 8, and D, denote the totai traffic and budget per wnit arca. Let 4 be the area per node.
Each node will generate new messages at a rate of AS,. If L is the internode distance then the number
of hops taken by a message, on the average, is 5N/L. Therefore the total traffic passing through each
node will be AS,5N/L messages per second. Let € be the number of nearest neighbors each node has,
which is also the number of (half-duplex) lines per node. The total traffic per linec must therefore be
AS,8N/Le. If Tis the required total average delay, the delay suffered when crossing a given line must
be TL/8N, and the capacity necessary for each ling is

SN
LT
Let us first ussume tnat a=b=1. The total cost per node is th=n found by maultiplying (37) by L, the

length of every one of the lines, and by ¢, the number of lires per rode. If we divide by A, we find
the cost per unit arca to be:

AS,,—;— + == an

eON
TA

Let M be the number of nodes in a square whose sides arc equal to N. The area per node is then
NY M. Substituting this for 4 in (38) we get

D, =8NS, + —— (38)

M _l_
N T

In & two dimensional network, the natural traffic measure is N2S,. and the burstiness measure is
NS, T. When the traffic is very steady only the first term in (39) is significant. The best network will
then be the one with the smallesi 8, i.e., since the triangular network imposes the least extra distance
on messages, it is the: best of the three for steady traffic. When the traffic becomes very bursty
(NS, T<<1) only the second term in (39) is significant, and the hexagonal network is the best
because it has the smaliest €3.

D, = 5NS, + (39)
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Fig. 11 shows the cost of the three networks, n.rmalized by the cost of a hypothstical network in which

.E S=e€=] . As expected, the triangular neiwork and the hexagonal network are hest when the traffic is,
,_ respectively, very steady and very bursty. It is somewhat surprising, thcugh. that the square network is
E ' never the cheaocst of the three.

For general @ #ad b, i.e., rot necessary equal to 1, we get from (37)

D, = -}«L'(AS,,BN/Le +sn/TL)

L does not in general disappear from the cost formula, but we can write 4 =nL?2, where  is a con-
stant, depending on the geometry of the network, and given in Table 1. When comparing the three
regular networks we shall assume that 4 and the density of terminals are common to al! three. We
then find the following: When the traffic is very bursty the best network is the one having the smallest

{ e ‘:""/28:.2 oWhen the traffic is very steady, the best network is the one having the smallest
b, b-a
{ ¢y 5°

e s T

It is quite intuitive that as b grows smaller the advantage of the hexagonal netwark grows, since
it concentrates its traffic on fewer high capacity lines that are becoming relatively cheaper. As a grows
smaller the advantage of the hexagonal network decreases, since its line channels are shorter. Using
the numeric values for 5,¢ and % we find that of the three regular networks, the hexagonal is always
(i.e., independently of g and 5) the best when the traffic is very tursty. When the traffic is very steady
the hexagonal network is better when < 0.65 +0.19a, otherwise the trianguler is better.
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There is, of course, no reason to limit our consideration to the three networks in which all
3 ‘ nodes are cquivalent and in which lines connect only nearest neighbors. When the traftic is steady, we
can connect every node to more of its neighbors, in order to lessen the distance messages have to
ravel. However, since the triangular network already has 8= 1.10, the most we can gain by introducing
more and more lines is 10% . When the traffic is bursty there is room for a lot of improvement, and
1 - that is where hierarchical structures becciae interesting.

i et ikl

. Newell [18] gives a general discussion of networks with an economy of scale in their cost. He 3
! . points out that even if the node placement and the traffic requirements are symmetric, the best network ;
will in general nor have the same symmetry. For example, the two-dimensional square network with a 1
large M and a bursty traffic can be improved by deleting every other vertical line. The resulting struc-
ture, shown in Fig. 12, forces some messages to go an extra distance, until they can find a vertical line.
But us a result only half as many vertical lines are necessary, and when the traffic is bursty this will
more than compensate for the extra distance travelled.

e

P T

{n our model there can be three independent sources for an economy of scale: when b <! large
capacity lines are relatively cheaper, when a < | long lines are relatively cheaper, and when the traffic is
bursty sharing unused resources lcads to significant economies. What is the best network structute, as
a functior. of a, b and burstiness? Newell, in the same paper quoted shove [18], points out that there
arc no efficient algorithms for solving large minimization problems when the cos: functions are con-
cave, i.c., when there is an economy of scale. Symmetry cannot oe used to reduce ihe complexity of
ke problem, because the best solution will not necessarily reflect the symmetry of the traffic require-
: ments. We shal: not, therefore, try to find the best network. Can any conclusions be drawn by consid-

{ ering tire geomeiry of nur heuristically constructe: hierarchicel structures? In the previous section we
' igriored the germetric constants, bui let us now bring them into the treatment of two-ievel networks,
T when a=b=1 and when the traffic is not necessarily bursty. '
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Let Dy be the cost per unit arca of the top level (the station-station level), and let 7, be the
average lime cach message spends in the top level. (38) applics directly to the top level. Let L be the
distance between ncarest stations. and let 4 be the areu per station, where 4 =yL% By defimtion, N is
the average line-of-sight (erminal-to-terminal distance @ message has 1o travel. Wher N>> L, Nis also
the average station-to-station distance a message has 1o travel. Therefore, from (38), the cos: per area
of the tap level is given hy

D, = 5Ns, + N L (40)

L2 T,
In order to calculate the cost oi the bottom level, we must find the average terminal-station distance. If
the ar=a assigned to a swtiop was a circle of diameter L this average distance would have been L/3. In
practical networks with inter-station distance L the average terminal-station distance must be larger, and
we shall write it as {L/3, where { is a constant tc be determined. The average square root of the
terminal-station distance will simiiarly be written as £{4/5)V/L/2, where £ is a constant.

A summary of the numerical coeflicients characterizing the networks built with the three regu-

lar tessalations at the top level is given ia Tablz 1. Alse included in the tabie is the hypothetical, but
impossible, ‘best’ neiwork, which we use for normalizing the cost in our figures.
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Table |
_ Cocsflicients Characterizing the Geometry of Two-Dimensional Networks

_ . square triangular | hexugonal |  ‘best’ |
actual distance/line of sight ) 1.27 1.10 130 I
lines per node € 4 6 J |
arca per node - 4 1 Vi2 3V3/4 3V3i/4
ierminal-siation distance | [ 1.148 1.05 38 I A
terminal-station Vdistance £ 1.070 1.026 1.168 ]
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Let Dy ve the cost pes unit arca of the terminal-station level, and let T; be the average time
cach message spends in this level. Since every message goes through this bottom level twice, once al
each end of its path, and sinze cach terminal has two half-duplex lines, for sending to and recciving
from the station, respeclin;cly, we see that

L 2M 1
D,=2S{=+ <=L~ (41)

2 ub 3 2.)N2 £ TZ
where, as before, M/N? is simply our way of writing the terminal density. For a given L the total cost
of the two-level network can be obtained from (40} and (41) when minimizing D,+D; by choosing 7
and T, subject to T=T+7T; Let x be the ratio between L and N, that is. x is the interstation distance

casured in the natural distance unit of our networks. The total cost is then
2

n, = fvs,,<s+2gx/3)+lr —LJE#’/GN’)’ + %g«'iﬁx'/'/v .4

Equation (427 give: “he tozal cost of a two-level two-dimensional networks as a function of x, the ratio
beiwecen the interstation distance and the average distance travelled by a message. Which x will minim-
ize D,? This best x is casily found numerically, and 1ig. 13 shows the cost of two-level syster.s, in
which the op level was a square, triangular or hexagonal network. The cost of these networks, where
the best x was chosen for cach as a function of NS, 7. was normalized by the cost of the hypothetical
*best” network defined by Table |, with ies best v as a function of NS, T.

Once again, we see, that the square network is never the best. When the traffic is bursty the
hexagonal network is best, and whe the traffic is steady the triangular network takes over. Comparing
Figs. 1} and 13 we see that in the two-level system the triangular network becomes betier than the hex-
agonal one ut a smaller value of N2S,T than in the onc-levcl system. This is because we simply ignored
the question of how messcges arrived at the stations in our treatment of one-level networks. In our
model for two-level networks we explicitly took into account the terminal-station distance. If we com-
pare our three networks with the same area per nod: we see that the triangular network has the smal-
lest average terminal-station distance, and the hexagornial network has the largest average distance. Thixs
distance is irrelevant when the traflic is bursty, but gradually becomes important as the traffic becomes
steady, and is the reason for the earlier superiority of two-level triangular over hexagonal netwaorks.

Figs. 11 and 13 are both drawn for M=1024. If we consider a different M the one-level curves
of Fig. 11 will simply be shifted along the N2S,T axis, while retaining their shape. The shape of the
curves describing the two-fevel networks is not invariant when M changes, but the general characteris-
tics were checked for M=16, 256, 1024, 4096 and 16384, and they are the same: triangular two-level
networks are good for steady traflic, hexagonal networks wre gond Tor bursty traffic, and the square net-
wearks cre never the best of the three.
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Wheis the tratfic is bursty and M is lerge, more than wo-levels will be aven batier. What will
! be the good geomeiry? in the previous section while deriviug (36), we saw tha! when the traffic is
: very bursty end when M >>1 the network <ost is dominated by the terminal-station part. it immedi-
l ately follows that the best network will be the triangular, whick has the smallest terminal-station aver
' sge distance when the area mer station s given. Combining this conclusion with the previous discussion
: of Figs. 1! and 13 we gre tempted 16 conjecture thut whenever the best number of levels, as a fupction
of burstiness, is uscd, the top 'cvel should have the trianyular geometry. The top leve!l will either be
( stezdy cnough, or else it will be just on= of many levels, and the cost of all but the top level will muke
aur triangular network (with its hexagonal! tiles! the best. For the same reason it is natural to assume
that the top Jevel will always reflect the translationa! and rotational symmetry of the traffic require-
ments, and tisat e stall never have 1o use netwerks like that of Fig. 12 in the top level.
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11. Conclusions

>y

' We have assumed that the traffic level and the necessary performance are specified, and that
the goal is to fuiill these reauirements with the least cost. The quality of a given organization is
defined to be the inverse of the cost of a given orgarization, suitably normalized. Buistiness is defined
and serves as a natural dimensionless number to characterize the requirements. We also assume that
space is homogeneous and isotropic: terminal density and traffic requirements are the same everywherc.
This often leads o results that depend only on the average distance fravelled by messages, and not on
the distribution of distances travelied. The validity of our results in the case of irregularity either in
spaiial distt:bution or in traffic requirements was not investigated. The cosi of communication
resources was modetled by simple power laws.

OSR——,

. Whor the traffic is steady, the quality of simple one-level dedicated-channel systems is reason-
ably gcod. sincc all channels will be well utilized. When the traffic is bursty, channels are hardly utif 3
ized, ¢nd a significant gain can be achieved by sharing, cven if the technology has no inherent §
economies of scale.

LT R e e e e - s

T

To make sharing of dedicated chuannels possibie, we introduse regular hicrarchical structures.
{For a treatiaent of hicrarchica! organization mixing ALOHA and dedicated channel see 1191) Our ren-
ular structures are obtained by dividing the terminal population into ecqual groups, and piacing a concen-
trator in the center of eachh. Regular multi-level huerarchical structures can improve the pecformance of
bursty systeins significantly. The optimal structure s characterized by a balance principle, that gives the
ratic of investment in auy two consccutive levels. Another characteristic of the opiimal regutar
‘ hierarchical structures is that channels are organized in small groups of equal sizes.

PR

Ty SO

in line systems the improvement is obtained by shortening individual lines and froia sharing
: lonz high-capacity lines. The performance of regular line structures is therefore strongly dependent on
r ' the dimensionality of the system. It is harder to improve twc and three-dimensional line systems by
" our regutar struciures since the typical line length decreascs more slowly with the number of groups k
when the terrminals are distributed in more dimensions. The question of the performance of the best J
possible line structure is raised but leit open. Wé conjecture that the dependence of the cost of regular
structurcs on dimensionality will not be signiticantly improved by any scheme.

The improvement of broadcast systems follows trom spatiai reuse: i.e., different groups of ter-
minals can communicate with their concentiators by short range transmissions at thc same limc,
therehy shaving bandwidih. The performance of regular broadcast systems is independent of dimen-
sionality, and very similor 1o that of ihe onc-dimensional line systems. For systems in two or mose
dimensions which #re very distributed and bursty, dedicaled brondeast channels are thurefore better

than line chennels.
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The problem of very bursty distributed networks with dedicated cherness reduces almos:
cntirely to the centralized system prublem, since the ‘netwotk’ part at the top level is only one of very
many levels. Tessalating the plane with hexagonal tiles lesds to the best network with both technolo-
gies, but for different reasons. Of all reguiar shapes tessalating the plane, the hexagon has ihe smallest
average distance to its ‘center’, and this makes it superior for line networks. Tessalating with hexagons
is good for broadcast networks using omnidirectionul antennas hacause it results in the least interaction

I

- between nelghboring iiles, and rakes the most sharing pussible (31,

j The best geometry for a notwork with o given number of leveis changes witk barstiness, but it

¥ secras that, for liue networks, when the best number of levels is used, as a function of burstiness, tes-

b salating the plane with hexagonal tiles (and forming a triangular network of communication lines) is

f usually the best.

: ¢

f * Appendix

.: } To simplify our formuias here let us rewrite (15} and (16} as

;;1 b P} Py (A

: _— - - (A2) ‘

t: B! t1 X )

L : g

b 5 where 4

t k

] : - i _

1} . ¥ -1+aln j

E' § y - l;'x ‘.3

E § PRSI ]

E f ) Using 1 2=m and T B~b we can solve (Al) and (A2) for P, and B, in terms of B.rtsx and m.

t . i i

5 [ When g# »n we get

X Sl

i § ) P, = V0 {::—1"’{"’% o (AI) {

E ! |

\ : B=x"'="%Xp8 (A4) !

! ' 1-x" .

: : Ignoring geomietric ronatants, we also know that che foilowing must be true !

k , AR

E g ﬂ.z[l."s"r.')’ ‘ (A5)

‘ Z Using (A3 and (A4) i (AS) we can get B as a function of m,r and the consiants 4,5 ard x. lsolating

;_ ? the dependence ¢ r we get that B is nroportiona! to i
—sr O+1 k

| 1 (x’-l)(m"“’t"l o (A6) )

) l Differennating we ind that B is minimized, as a function of r, when i

i

il 3w xrb¥1Vg (A7)

Substituting {A7) in (A6) we get that 3 is proportional to (x'—i) and is therefore proportional to
m=08/+D . &ince the cost is propertional to B! it follows that when the best 7 is used the sys-

tem cost is proportional 10

o e T me”
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Substituting (A7) in {A3) we aiso see that when the best r is used the  do not depend on i, and they
must therefore satisy P=m'’’, Whilc the best number of levels will depend on g, i.e., on the quality
of the Adesign procedure applied to euch level, (A8) shows that the system cost, when the best number
of levels is usce, is independent of & For larger m we can also approximate (A8) by m'~%/" and see
that the growth with m of the best regular hierai chical system depends only on the geometric dimen-
sionai:ty and on the length dependence of line cost, and hardly depends on the capacity dependence of
line cost.

When aw=r (A3)-(A7) are not valid since x=s=f=1. But the solution is actually simpler. In
this case we get from (A1) that for every r, the best r-.evel system should have Py=Pyp= + - - =P =m!",
and from (A2) we get that By=Bp - - =3 =5/r. Substituting in (AS) and ignoring the geometric

coastaats we get
b+
=[I“’S"m"/”

Isolating the r-dependence of B, it is easy to see that the best r must satisfy (b+1)r =g In(m), and that
the sysiem cosi when the best number of levels is used is proportional to [In(m)]°*!,
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On the Advantage of Mixing ALOHA and Dedicated Channels

Abstract

When many terminals which are distributed in space must share communication rescurces, we
face the following problem: What scheme can control the access to the communication resources
in an effective way? We shall assume that S, the traffic to be carried, and 7, the acceptable
average delay, are specified, and that the goal is to design the least cost system satisfying these
specifications.

Dedicating a fraction of the resources to some source-destination nairs is one very simple access
scheme. Another simple scheme is ALOHA . When we combine the specified traffic and delay
into the dimensionless quantity ST, whose inverse we call burstiness. we tind the following: Dedi-
cating separate channels is good when the traffic iy steady, but bad when the traffic is bursty.
ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

Mixed-mode systems, using ALOHA in a bottom level and dedicated chanrels in a top level, can
be good, since they can trade the amount of interference in the random access level against the
number of dedicated channels in the top level. By choosing the right mix, such networks can
become insensitive to the limitations of both access schemes.

1. Introduction

When many terminals which are distributed in space must share communicatior. reso:ices, we
face the following problem: What scheme can control the access to the communication resources in an
effective way? We shall assume that S, the traffic to be carried, and T, the acceptable average delsy,
are specified, and that the goal is to design the least cost system satisfying these specifications. Further-
more, we shall assume that only the capacity, i.e., bandwidth, necessary has a cost, arid that equipment
and transmission power are free.

Dedicating a portion of the resource to source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA [1,2]. When we combine the specified traffic and delsy
into the dimensionless quantity ST, we find the following: The dedicaied-channel s:heme is good when
ST>>1 (the traffic is then said to be steady) but bad when ST<<1 (the traffic is then said to be
bursty). ALCHA is good when the traffic is bursty, but bad when the traffic is steady. Neitker ALOHA
nor dedicated channels are good when the traffic is of medium bursiiness.

It is possible to improve the dedicated channel scheme when the traffic is bursty by a hierarchi-
cal structure that makes sharing of few high capacity channcls possidle [3]. [t is also possibie to
improve the ALOHA scheme when the traffic is steady by trading off treasmission range and the neces-
sary number of hops [4]. Is it possible to obtain a good access scheme for medium Wurstiness by mix-
ing the dedicated-channels and the ALOHA schemes? Kleinrock [S] has shown that splitting the
resources and the traffic between two access schemes can never lead to an improvement. Here we show
that by building a hierarchical system with different schemes used at different levels we can get a
significant improvement at medium burstiness. The first half of this paper applies this idea to systcms
in which the sources of messages are many terminals distributed in space, but in which all messages are
destined to one common sration. We shall call such systems centralized, and assume that m, the number
of terminals, is very large. In section 2 we introduce the mixed-mode scheme under the most
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favorable conditions. In sections 3 and 4 we relax the assumptions on the interaction between levels
and on the interaction bctween lower-level ALOHA groups respectively. Seciion 5 shows that sharing
the channel by both levels is often better than splitting it. Mixing dedicated channels and any random
access scheme is discussed in section 6, and section 7 shows that having more than two levels leads o
only a small inprovement.

In the second half we discuss systems in which distributed terminals are both the sources and
destinations of all messages. We shall call such systems nenvorks, and assume that the average distance
travelled by messages is much larger than the distance L2tween a terminal and iis nearest neighbors.
Section 8 introduces two-level mixed-mode networks with the simplest possible routing. Section 9
shows that improving the random access level leads to a relatively small overall irnprovement, and sec-
tion 10 similarly shows that introducing more than one dedicated level leads tc a small improvement.

Throughout the paper we assume that the communication resource available is a broadcast
channel of capacity C. We shall also assume that the message arrival process is Poisson with a total rate
S; that message lengths have ar: exponeatial distribution; and that all termingls contribute equally to the
overall traffic. This !ast assumption characterizes the case which is hardest to control efficiently. We
choose the data vnit so that the average iength or a message is equal to 1. This is simply a convenient
normalization, which is equivaleni to measuring communication capacity in messages (of an average
leagth) per second, instead of measuring in bits per second.

If the terminals were co-located in the same place, the best access scheme would be to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages (6]. When terminals are distributed
and cannot form one queue without some investment in coordination and control more bandwidth will
be necessary. Assuming that S and T are given, we define the quality [7) of an arbitrary access scheme
as the inverse ratio between the capacity necessary when using this scheme and the capacity necessary
when using the best possible scheme, in which messages form one queue and share one channel. When
messages arrive independently and their iengths are exponentially distributed, this best scheme is the
M/M/1 queue, in which we have Cyp =S +1/T.

2. The ‘No Interference’ Case

Given our broadcast channel, let us buiid a wwo-ievel hierarchical system by dividiug the latge
number of terminals into R equal groups, and by giving each group a repeater. Eack message will go
from its terminal to its repeater, and from the repeater to the station. The terminal-repeater (bottom)
level wiil have a larze terminsl population, possibly bursty, while the nunmber of repsaters vill, hope-
fully, be small, with enough traffic going through euch for the repeater-station (top) levei to e steady.
It is natural, therefore, to suggest using ALGHA for the terminal-repeater level, and using dedicated

channels for the repeater-statior. level.

Using ALCHA for the bottom level is desirable for other reatons too. For exampie, because
no explicit control is exercised over transmission, ALOHA is aspecially good for mobsle termiua’s and
for situations where the number of potentially active terminals is much greater than the actual nuraber

active at any moment.

In order to model this two-level mixed mode centralized system, shown in Fig. 1, we shall start
with the following assumptions (the words in italics will serve as names for the assumptions;:

() channel sharing: The cormmunication medium is a broadcast channel, anc both levels (terminal-
repeater and repeater-station) may use the full bandwidth.

- e N e eenn . VAN .




(2L oo T M 0

. Ty VFEW"*‘ ,,
o :N .r~.‘I’ o
STATION
R RZPEATERE USING
\ DEDICATED CHANNELS

RN
// \ // \ //\

o O C O O
‘——\N\-—\/‘-’ w A’ ., g
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Figure 1. Two-Lavel Mixed-Mode Broadcast Systems.

2) spatial reuse: The terminal-repeater communication will be done using the ALOHA scheme.
Each of the R groups caw use the entirc bandwidth to communicate with ‘its’ repeater and there
will be no interference between transmissions of the terminals in different groups. That is, the
terminals in cach group will be heard by exactly one and the same repeater.

{5) transparent bottom: Bottcm-level transmissions have no influence on top-ievel transmissions.
Each repeater will use a dedicated subchannel whose capacity is equal to 1/R of the rora/ avail
able capacity for its communication with the station.

(4} A repeater cannot listen to its terminals while it is transmitting to the station.

(5) no interference: A repeater’s capacity to listen to its terminals will not be bothered by any of the
other repeaters transmitiing to tne stetion [8).

The throughput-delay performance of the ALOHA schemes is not described by a simple ana-
Iytic expression [2). For simplicity we model the delay T in an ‘intinite’ population ALOHA system
carrying 8 traffic S on a channel whose bandwidth is C by T'= el This is 2 simple two-parameter
approximation, that reproduces the known behavior of (unsloited) ALOHA when S=C arnd the known
behavior of (slotted) ALOHA when S/C=1/e. For a similai three-parameter approximution see {5].

In our two-level scheme, if a terminal is trying to transmit to its repeater while the repeater is
transmitting to the station, the terminal will not be successful, and will have to try again. To minimize
the warteful effect of these bottom-level faiiures the two levels should be slotted and syncironized.
This means that dedicating subchannels in the top level must be done ty Time Division Mutltiple
Access (TDMA). Despite the fact that TDMA rust be used, we shall describe the delay in the top
level by the FDMA formula, which is both simpler and more similar to the M/M/1 type formula we

6?7

T e e bt T R N L

- TN e N s A~ B et e P S - -

o ik

P

G




] use for delay in ALOHA systems.

! When both levels are thus slotted and synchronized, the effective capacity availcble to each ter-
i minal group will be equal to C~S/R, since S/R of the available capacity is used by its upper leve!
repeater. The lozd on each lower level ALOHA system accessing a given repeater will be S/R. The
I, average time T a message will spend in the cystem is therefore
| R 1
- +

T= e s CSIR =R
where the first term is the time spent in the ton level (iepeaier-station) and the secend is the time
spent in the bottom level (terminal-repeater).

)

With (1) giving the total time in system, we can now ask what is the optimal number of
; repeaters. Minimizing T wce get
t

R it = %[(He)s FTFSCS)) ()
P With this optimal R we get for T

: : - R Y

E ; T it = —‘C-[|+\/(T+Ws (e=a] 3

From (2) we can see that when S is very small, the optimal R is almost zero. 'r'his occury because the
; two-level structure is werse than the one-level ALOHA when S—0. The optimized R will 1ty ic com-
; pensate for this by driving to zero the time spent in the top ievei. We can also get from (2) that the
largest optimal R is 3.95, obtained when $/C=.944. In practice, R must be an integer greater than one.

T

Equation (3) gives T as a function of S and . The quality can be calrulaied by comparing C
with the capacity necessary in an M/M/1 scheme for ihe same Sand . That is, Q= (S+1/T)/C. Fig.

2 gives the quality of the two-level structure with the optimal R (whick is not necessarily an integer). .i
: The section of the curve in which the optimal R is smaller than | is not drawn. Also plotied is the
b : quality of the two-leve! structure, when Tis given by (1), and when R is fixed 2t 2, 3, and 4. For com-
: parison, the figure also gives the quality of ALOHA and the quality of FDMA with m=1i024 terminals. .

We see that a two-level system can fill in a large portion of the ‘chasm’ left betw=zn ALOHA
and FDMA. This chasm is an ‘infeasidle’ region when only ALOHA and "DMA are <onsidcred. When

! ‘ the number of terminals grows, FDMA will move even further to the rignt, but ALOHA nd cur two- :i
] level scheme will not be modified (both of these alreudy assume an infinite population of terininals), so

i the relative gain achieved by the two-levei hierarchy over both ALOHA and FDOMA will be even :

greater. ;

] 3

This seems almost too good to be true! In the following sections we shall recxamune our b

; § assumptions and see how relaxing them will modify and degrade the result.
i 3. The ‘Full Interference’ Case 1

Some strong assumptions were made in the last section to the efieci that both ierminals and
repeaters can use the same broadcast channel, with minimul interference. Consider first the assump-
tions of ‘transparent bottom’ and ‘no interference’. These assumptions are reasonable if all the termi-
nals are {ar from the station. for example if they are spread around a ring with the station in the mid-
dle. But if there are terminals ciose to the station, more interference may occur. Transmissions from & .
terminal situated near the station to its repeater may interfere with repeater-station communication, and )
transmicsions from one repeater t¢ the station mey interfere with transmissions frora terminals to 1
another repester. »
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Even if the geometry alone is not enoush to justify the assumption of transparent bottom, ihere
are other good reasons to consider it valid. Since we expect to have few repeaters, they may be expen-
sive and sophisticated. We shali assume now that repeate ..e powerful and sophisticated enough to
be perf .ctly captured by the station in the presence of buttom-level transmissions. The top levei will
never ‘see’ the bottom level, and this is the reason for the name ‘transparent bottom’.

The assumption of perfect capture answers some of the problems raised at the beginning of the
section. To model the effect of the other problems, we shall modify the ‘no interference’ assumption
and assume that a repeater cannot lister: i its terminal whenever any of the repeaters is transmitting to
the station. Calling this new assumption ‘full interference’ [8], ve shall use 1! as a worst case estiinate
for the inierference between repeaters and terminals. With the full interfereace assumption, the
effective capacity available to each terminal group is C—S, and instead of (1) we have for T the follow-
ing expression:

R l

T= St iR @

The optimal R is given by
eS+VeS(C—S)
R optiraat ™ - (5)
cC-8

and 7 with this optimal R is given by

. 1 ey 2

1= =<|vasTie=sy+1 |
Fig. 3 shows the quality of thc two-level hierarchy under the ‘full interference’ assumption. A k

significant part of the ‘infeasible’ region is still filled, but many more repeaters are necessary in order to
achieve this. From (5) we see that as S—C, R—oo. The quality in Fig. 3 is given for optimal R, and
for R fixed at 2, 4, 6, 8, 16 and 32. For comparison Fig. 3 also includes ALOHA, FDMA with 1024

terminals, and the two-level ‘no interference’ case of the previous section with optimal R. In both .
curves with optimal R only the porticn with R > 1 is drawn. They stait at the same point because when
R=1 the ‘no interference’ and the ‘{ull interference’ assumptions are identical. i

4. lateracting ALOHA Subsystems

Spatial reuse is another strong assumption made in section 2: each repeater will be heard by ‘its’'
receiver and by no other receiver. Is this a reasonable requirement? We do not mind installing a few
scphisticated repeaters but the many terminals should be cheap and simple. These terminais may be ;
mobile or unattended and they will not necessarily know where they are or where their repeater may be. j
Even if each terminal had a directional antenna or an adjustable output power, it might not have the
information necessary to control them. Let us assume that all terminals have the same power and an
omnidirectional antenna.

Consider a division of the plane into a set of equal poiygons: In the ‘middle’ of each we place a
repzaier. Assume the terminals are uniformly placed over the planc. We wish to guarantee that a ter-
mingl will be heard by its ncarest repeater. If the only factor that determines reception is power at the
receiver, we must give each terminal enough power for the worst case (when its distance to the nearest
repeater is maximal). We shall assume that whenever two terminals have enough power to be heard by
the same repeater, the resulting interference will destroy both messages, that is, there is no capture of
the terminals’ transmissions. Because every terrinal is given enough power for the worst case range, ;
some terminals will be heard by mote than one repeater.  The assumption of no interaction between -
terminal groups must, thereiore, be modified. ‘
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Let us stress once again that we do not ex, licitly treat the guestion of transmission errors.
Insteud of discussing the probability of successful reception and its dependence on various parameters
we use the following simple model: A trunsmission is alw:ys received covrectly if its source is within
range of the destination and if there is no interference at the destinytion. Interference is caused by any
other trunsmission within range of the ‘estination. The range dependence of a successiul reception is
modelled as a step-function. When tiiere is no interference, a transmission will alwayvs be successful iIf
the distance to the destination is less than the range, and will never be successful if the distance is
more than the range.

Le* 4, be the area covered by the any group of terminals. inteaded to he heard by one
repeater. Let A, be the area covered by those terminals which are actually heard by the repeater. In
any safe design we must have 4,> A,. Let r be the ratio 4,/4,. 7 will obviously depend on the shape
of the cells around the repeater and on the terminsi’s power. What is the cffect of the number of
repeaters on r? A simple geometric argument lcads to the following conclusion: If we change the
number of repeaters and the size of their cells, hold fixed the shape of the cells and adjust the
terminal’s power to get the same power at the repeater in the worst case (which is when the terminal is
as far as it can be from the nearest repeater) then r will stoy the same.

For example, take the case of a plane divided into identical regudiar hexagons. Let us give every
terminal exactly the power nccessary, on the average, to reach the conter of a hexagon (rom its ver-
tices, without any margin of safety. In this case r will be the ratio betweer the area of a circle and the
area of an inscribed regular hexagon, i.e., r=1.209 . [f we wish to guaranice thai each termnal can
reach more than one repeater the transmission runge must be equal to the (worst cas2) iner-repeater
distance. In this case r will be cqual to 3.627 .

For a given shape of ccll and power adjustment policy, we have therefore u set of interacting
ALOHA systems, where the amount of interaction does not depend on the number of repeaters. A
simple argument, like that used to find the maximum utilization of slotted ALOMHA system [9], leads to
the following: The maximum utilization of each ALOHA system consisting of a repeater and itc termi-
nals will be degraded by the interference of its neighbors, and is equal to 1/ re,

Modifying (4) we get for our present two-level system

. R |
T=C st s =asir )

The optimal R is now given by
R it = ———: [ers +Vers (= 5]
C-5
and T with this optimal R is
1
Cc-8
Fig. 4 shows the quality of the ‘full interference’ case when interaction among different ALOHA sys-
tems exists. r the coefficient of interaction, takes there the values 1,2.4 and 8.

T::

vesre=51+1)’

In general, with more interaction, we shall be able to achieve a lesser portion of the infeasible
region, and more repeaters will be needed. But having neglected the cost of repeaters, we should cer-
tainly not allow their number 1o grow without limit.  Apother problem with large R is that we have
assumed that the termzinal population is infinite.  But when R becomes comparable o our actual
number ol erminals, the one-fevel FDMA will, of course, be better than this two-level organization.
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If a tranission from a terminal can be heard by more than one repeater, the system perfor-
mance may be improved by allowing any of the repeaters, which received this transmission correctly, to
relay it to the station {10]. In that case the message will not have to be correctly received specifically
by its rer:zater, snd success in reaching any of the repeaters will be enough. This advantage should be
traded againsi the possibility that a message "vill successfully reach moie than cne repeater, and that all
these rcpeaters will send it on. We shall not analyze this idea in any more detail.

5. Sharing or Splitting?

In the previous sections we have introduced several models for a two-level system in which
beth levels share the communication channel. But is ihis sharing good”? 1n order to answer this ques-

tion, consider another alternative:

if we have a4 communicaiion medium with capacity C, let us assign a portion BC to the
terminai-repeater traffic and a portion (1—-8)C to the repeater-station traffic. Using R repeaters, and
assuming no interaction among ALOHA subsystems, we get the following equation for T
R I
T« +
BC~-S  (1-B)C—eS/R

We car now minimize T by choosing both R and 8. The minimum 7" will be obtained when the

following two equations are satistied:
es
BC~S
C-p)  JVeS +VBC-8§

These equations can be solved numerically, and Fig. S gives the quality of this aptimal two-level
channel-splitting organization compared with ALOHA, FDMA with 1024 terminals  Also included are
the channel sharing scheme, in the cases of no interference 2nd full intererence. We sec that sharing
the channel is significantly better than splitting it.

R::

Sharing is superior to splitting in very general circumstances, as the following theorem shows:

Theorem I: Consider a two-level terminal-station communication system using a broadcast channel.
This channel ~an either be split between levels or shared by both. Assume the chennel-sharing mode

has the following two properties:

(D Top-level communication is not bothered at all by bottom-level communication, i.e., the bot-
tom level is transpaicent.

2 The only effect activity in the top level has on the bottom level is to subtract itself from tl.:

capacity available to the bottom level.
Then the channel sharing mode is superior to the channel spliiting mode.

Proof: Let us start with a channel-splitting system carrying 4 given traffic and modify it to get a
channel-sharing system that will carry the same traffic with a smaller delay. When the new top level is
active it ouses all the availabie bandwidth.  lts transmission time will therefore be shorter than the
trunsmission time in the channel-splitting  system, By appropriate scaling and adjustment of the
transmission policy in the top level we can ensure it will have an equal or shorter waiting time, and that
it will utilize the same fraction of the total communication rescurce as did the old top level. The delay
in the new :op level will therefore be smaller than the delay in the old top level. Since the oid top level
must heve been less than fully utilized, some of the capacity assigned to it in the channel-splitting
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organization ‘nd made unaviilable to the bottom level was left idle. In the channel-sharing system
evervthing that i3 not actually used by the top level is vvailable to the bottom level. The new bottom
level has therefore more capucity, and the delay in it will be smalier. We thus have that the total delay
in the channel-sharing system is smaller than the delay in the channel-splitting system;.

]

Are the assumetions used in proving thecrem | reasonable? Thae first is simply the assumption
of ‘transparent boitom’, introduced and justificd carliecr When the two levels are synchronized, the
wtal capacity available to the bottorn level will be reduced exactly by the amount of activity in the top
level. But the assumpticn that the delay will simply depend on this reduced capacity ignores the details
of the occurrences fuilowing a transmission failure (for example, the retransmission policy end its
inlluence on delay). The second assumption is thus morc a device to approximaie and simplify the
behavior of real systems than a direct description of them. It is a natural extension of another device
we have used consistently: the assumption that the total offered traffic in an ALOHA system is a Pois-
£90 Process.

The simple model of the influence of the top level on the bottom level, which is assumed in
theorem 1, has been used systematically in earlicr sections of this paper. As a different exampie of the
benefit of sharing. lct us see the improvement possible when dedicated broadcast channels are used.

Assume we have m terminais and form a two-level system by splittizg them into 2, groups with
P, terminals each. If dedicuted channels are used at both levels and there is no interference between
lower-level groups we have

P, + P,
;-8 C,—-8/P
If the total communication capacity we have is C, the task of designing the best system can be formu-
lated thus: Minimize T when §is given by choosing Py and P: subject to P 2,=m, and by choosing (|
and C; supgject to O+ (C,=C The  constrained minimum is  achicved  when
Cy=(C+8)/2, Cy=(C-5)/2and

T-

2
Py s )
P, Im -5 |

and the resulting minimum 7 for a two-level dedicated channel scheme is given by

4  4m
(-85 -8
What will be the system performance if the channei is shared between levels? To analyze this cise we
shall assume that the bottom level is transparent and can detect its failures immediately. The lower
level uses the empty slots icft by the upper level in a round-robin fashion. The total delay for a system
of P, groups of P, terminals each will modelled by

P, . P,
-85 (C7S)-8/P,
The first term 1s the delay in the top level, consisting of Py dedicated subchannels. The second term is

the delay in each one of the bottom-level subsystems, cach of which is carrying a traffic of §/P, over
P, dedicated subchannels. C - 8 is the capucity available to every one of the bottom-level systems.

T = N

T =

(8)

The T of (8) will bc minimal when
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and the aclay is then given by
5 2Vm
- + )
T (C-8)¥ C-8§ @

Comparing (9) with (7) we see that we gain a fuctor of at least 2 by going from a two-level channel-
splitting scheme to a two-level channel-sharing scheime. Comparing (9) (0 the delay in the one-levei

scheme. given by T = ?T—S we see that the two-level channel-sharing scheme is better that the one-
level scheme as long as P, i1s smaller than m.

6. Mixing with a General Random-Access Scheme

The channel-splitting curve in Fig. 5 shows the power of the two-l2vel mixed-mode idea even
in its simplest form: by introducing intermsdiate repeaters and chocsing their number we gain a
significant improvement over both the one-level ALOHA and the one-level FOMA. By choosing the
aumber of repeaters, we can make sure that the dedicated channels are not underutilized and that we
Jdo not have ALOKA systercs that are tco heavily loaded.

Retracing our steps so far, we can see two idcas that improve the mixed-mode organization
even more: If top-level transmission can be perfectly ci/tured in the presence of bottom-level transmis-
sion then both levels should share the channel, und we get the ‘full interference’ case. If the interac-
tion between levels is minimal then the performance is even better, and the ‘no interference’ model is
then appropriate.

Fig. 6 repeats some of the curves of previous sections und also includes the two-level ALOHA
scheme of [4]. We see that two-level ALOHA offers little ...iprovement over the two-leve! mixed-
mode scheme, even though the two-level ALOHA was modelled with the best possible assumpiions
regarding the interaction between levels. It can be shown that the three-level ALOHA offers even less
improvement {4]). We thus reach the conclusion that i you were to design a system for a given ST
where neither one-level ALOHA not FDMA perform well, you should almost always use a two-level
mixed-mode sysiem, and only rarely (i.e., for a small range of ST around | ) should you use two-level
ALOHA. Intuitively, a message should (almost) never have to face contention systems mwice on its way
fo its destination: if contending once is not enough to reach the destination, the rest of the way ch:uld
consists of dedicated paths.

The dedicated-channel scheme can be improved by a multi-level organization that uses dedi-
cated channels at all levels {3]. Even with the best number of levels, the cost of a multi-level
dedicated-chanrel scheme grows with the nurnber of terminals. The raixed-mode scheme presented
here already assumes the population of terminals is ‘infinite’, and its cost is independent of the number
of terminals. A hierarchical organization mixing modes is therzfore better, when the number of termi-
nals is large, than a hierarchical organization using dedicated channels only.

Will the analysis presented so far be useful if we have the option of using Carrier Sense Multi-
ple Access (CSMA) or any other random access that is better than ALOHA?

We shall describe a general random access scheme by
-
Cc-3/U
where U is ts maximum utilization. If U is greater than 1/e the random access scheme will be better
than ALOHA, and the region {in the Quality versus ST plane) left infeasible will become smalle: But
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there still will be a region that is infeasible if we consider only FDMA and the given random access
scheme, and the two-level mixed-mode scheme can help fill this infeasible region.

Let us divide the gap between .367 (the maximum utilization of ALOHA) and 1 (the max-
imum utilization of M/M/1) into four equal parts, and consider general random access schemes where
U (the maximum utilization) is equal to .526, .684 and .842. Figures 7, 8 and 9 show the quality of the
one-level and the two-level schemes, with this set of values for U. The mixed-mode curves were
obtained {rom the vormulas of this chapter by substituting 1/U for ¢. The two-level random access
curve was obtained as follows:

Let us assume that the total offered traffic G and the throughput § are related, in a generai ran-
dom access scheme with m terminals, by

-1
s _G|,_aG]|"
C Cll - C] (10)
The maximum utilization (i.e., the maximum S/C) of this system will be obtained when aG/C=1, and
is equal to
m-—1
l[l - l] (n
a m

Equation (11) has its maximal value when m=2, and the best two-level system will therefore, once
again, have two repeaters. Since we have denoted the maximum utilization of an ‘infinite population’
system by U we must have @ = 1/Ue . In analogy to (4.4) we can, therefore, model the delay in a
two-level mixed-mode system by

N N |
C-2a8" (C-G/2-S/2U

The first term is the delay in the repeater-station level, which has a maximum utilization of 1/2a, as
obtained from (11). The second term is the delay in each one of the terminal-repeater subsystems,
where G is given in terms of § and C by (10) with m=2 . ( This very simple model for a two-level
random-access system should not be applied when U>2/e=.736, because the calculated maximum
ulilization of a two-terminal system will then be greater than one!)

T

From Figures 7 , 8 and 9 we see that the conclusion formulated earlier for ALOHA systems
actually applies to random access systems in general: two-level mixed-mode systems fill a significant
part of the infeasible region. While our model for a system with two levels of random access may be
considcred too crude, it seems to say that two levels of random access do not offer a significant
improvement, and are aquost dominated by the two-level mixed-mode systems.

7. Are Three Levels Ever Necessary?

If two-level mixed-mode systems are good, would three-level systems be better? Consider, for
example, a system consisting of one ALOHA level as the bottom level, and two dedicated levels on
tops.

Despite the fact that every message takes two hops in the dedicated levels we shall assume that
only one hop, the longer one, influences other repeaters, and for this influence adopt the ‘full interfer-
ence’ assumption. If the two dedicated levels do not share bandwidth, but the bottom level shares with
both of them, we can write for the delay in this three-level systeni

9
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The first two terms are the delay in the dedicuted levels when we have R repeaters, obtained from (7).
The third term is the dclay in the ALOHA level, and 7 is the interaction ratio,

. If we assume that the dedicated levels share ... channel we can use for them (9), and the delay
in this three-level organization is

S VR ! (13)

S - T s T cs=es/R

E For a given C and S we can, in both (12) and (13), search for R, the number of repeaters, that will
{ minimize T.

T

Fig. 10 shows the quality of the two-level and the three-level mixed-mode schemes, when thece
‘ is no interaction between ALUHA subgroups (i.e., r=1) and the optimal number of repeaters was
chosen in each as a function of burstiness. The three-level scheme was drawn only when it is better
than the two-level scheme. Having three levels results in no noiiceable improvement if the two dedi-
cated levels split the channel and results in a small improvement if the two dedicated levels share the
channel. The reason for this small improvement is clear: going from one dedicated level to two dedi- A
! ; cated levels leads to a significant improvement only when the traffic is bursty und the number of :
: E cepeaters is large. But in our two-level mixed-mode scheme the number of repeaters is large only when
E : the traffic is steady. so adding a second dedicated level cannot lead to any dramatic improvement.

When we have interaction between the ALOHA groups, the number of repeaters becomes large
carlier, i.e.. when the traffic is bursty enough to make two dedicated levels betier than one. Figures 11,
: 12 and 13 show the quality of the three-levzl mixed-mode scheme when the interaction ratio r is equal
L oo to 2, 4 and 8. The three-level scheme in which the channel is split between the two dedicated ievels
i N was actually plotted in all three figures , but becomes noticeable only when r24.

e s

We see that introducing three levels improves the two-level performance significantly only
when the interaction between ALOHA groups is very large. Even then, the gain achieved in going 3
| ; from two to three levels is much less than the gain achieved in going from one to two levels. When
‘ the interaction between ALOHA groups is strong, it may be unreasonable to ignore the interaction
3 between repeater groups in the middle level. However, such an interaction- free division into groups
3 was assumad in deriving (7) and (9), which form the basis for (12) and (13). Hence our three-level
b results are likely to be too optimistic. In reality, a three-level mixed-mode scheme will achieve an even
smaller improvement over the corresponding two-level mixed-mode scheme than our figures show.

8. Two-Level Mixed-Mode Networks

lar 10 the one we saw earlier for centralized systems: it is easy to organize and to control (if any control
is neccssary) communication systems that are either very steady or very bursty, even if they are distri-
buted. It is ths distributed systems of medium burstiness that pose e problem. We saw earlier that a ,
hierarchical two-level centralized system which mixes dedicated channels and ALOHA in the appropri- ]
ate ‘amounts’ can be much better than either of them, for medium burstiness. Therefore, let us now
apply the mixed-mode idea tc networks. We shall discuss in detail only nne-dimensional networks, but i
Ty expect our major conclusions to be valid for two-dimensional networks too. Denote by N the average i
distance travelled by messages, and by S, the rate of traffic originating in a unit length of the network.

In networks, i.c., when poth sources and destinations are distributed, we have ¢ situation simi- 1

23
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Let us create a mixed-moede network to cerve a one-dimensioral system by the following pro-
cedure. Place stations at fixed intervals equal to L. Let every message go from its originating terminal
to the neurest station, then over the ‘station-nctwork’ to the siation nearest its destination, and finally
from that station to the destination itself. The connections betweern stations will be specified later.
Dedicatea broadeast channzls wili ke used for station-station communication, and ALOHA will be used
for terminal-stetion communication. When analyzing the mixed-mode network we shall assume that
the number of terminals per station is very large, this being the worst case for random access. But
when coraparing with dedicated-channel networks we shall assiime a set of equally spaced terminals, M
occupying any saction of the network with length N.

What distance is ‘ravelled by messages on tie station-station level? Consider a message that
has to travel a distance X from source terrainal to destination terminal. The distance it will travel on
the siation-station (top) icvel depends on the location of its source terminal within the station area, but
when averagin, over ail possivle starting locations we get:

Lemma: The uverage staticn-stsiien distance travelled by messages whose termiinal-terminal distance is
X, and whose starting point is uniformly distributed, is also equal to X.

Proof: X can be written a8 X «= nL+Y, where n is a positive integer, L is the inter-station disiance, and
6€ V<L Let us paramaterize all possible starting positions within a given staticn by 1. wiere
—-L/2 <1 < L2 . The distanc: travelled by u message or the stanon-station level is AL. where & is
the integer ncarest 1o (X +7)/L. 1 follows that

] if ~L/2<t1<Y--LJ/2

Kelpsr it L/ v<r<t)?

Che averaze Zistance travelicd on the station-station level is theiefore
n(L=Y)+(u41)Y = nl4Y 2 X
0
it follows that the average station-station distance travlied by vll messages is equal to N, the average
distance vetwecn suurce terminal and destiration terminal. This lemma dess not hold for two-

dimensional networks, but wheneve: N>> . we fiave taat N is 4 good approximation to the zversge
station-statior: distance travelled.

Let us assume that messages originating at ore 3tetion will be heard at its nuarest neighbors
only, (one on each side.) Yhat is the bandwidth necessary for such a one-level deqicated-chennel net-
wovk? V/hat is a good policy for creating tnd zllocating dedicaved channels”? Once ‘ve define aur chin-
nels, by defining traffic streams thai can be transmitt:d independently, the overafi bandwidth necessary
wiil depend on the capacity each chunnei needs and on the number oi colors nezessery to paint the
channel so that nc two of the same color interiere av their destinatious.

We shall assume ihat every station: has an omnidirect: onal antenna, i.¢., that every transmission
propagates in both directions Twe ‘ransmissicn policies are «ten possible: If all transmissions coming
out of a given terminai are queuea together aid transtoitted without regard 10 the directicn of their
destination, we necd at least thre: colors to ensure that a terminal dogs ot interfera with transmissions
destined to itself or to its two neighbors. Three are obviously enough, because they can be assigned to
termizials in a cyclic fashion. If we want t{rensmission from a given terminal to each of its two neigh-
bors {0 be done independently and at the same dm.e, we must give each ierminal twe channels. Four
~olors are then necessavy and sufficient to enatic each termina! 10 separately send in two directions and
to separelely receive from two directions.
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Let 77 be the average delay suflered in the top (station-station) level by all messages, and et @
he the ratio beiween £ and N, 1/z 15 the average number of hops taken by a message in the lop levet.
if all wraffic comiig out of a weminal sharc one chunnel, even though cach message is destined only 10
onc of the neighbors, the traffic on each channcl is NS,, and since three colors are necessary, we get
for this case that the necessary capacity for the station-station level is

I3

C, = INS, + == 14
ERLUAE b (14)

If we give each ierminal a separate channel for each direction, then the traffic on each channel is
NS,/2, and since four colors are necessary in this case we get

| 4

i = INS, + —— 15
1 Cy= NS+ - (15)
i Comparing (14) and (15), we see that it is better to have one channel per terminal when the traffic is :
¥ bursty (NS, T<<1/2) and it is better to have two channels per terminal when the traffic is steady ;
!

;

(NS, T>>1/2). Equations (14} and (15) will also describe one-level dedicated-channels networks if M
is substituted for 1/z, where M is the number of terminals in a portion of the network whose length is
N.

i Returning now to our twe-level nciworks, we must calculate the bandwidth necessary for the

bottom part. Let us first assume that all iransmissions in the bottom level have a range exactly equal to

: L/2. Tre total traftic carried by each erminal-station system is then 2LS, = 2zNS, . Despite the fact
thet half of this total traffic is coming from one scurce - the station - we shall, at first, model the bot-
tom level by a simple ALOHA system. With our assumption on transmission range there will be no
interact’»n between neighboring ALOHA systems, and we can write for C,, the capacity necessary in
the bottom level,

T ) TR T i R R S T
et Bat ks

N C, = e2zNS, + 2~ (16)
\ T

‘ where T is the average delay for getting through # terminal-station system once.

iet us assume that separate capacities will be assigned to the terminal-station and to the
sation-slaiion subsystems, without sharing. The necessary total capacity can then be obtained by
minimizing C4C, subject to T\+2T, = T, where 2 multiplies T, because every message goes through
rwo terminai-statios systems, once at each end of its path.

M T L AT vy ~F
e

Cumtiairg (14) and {18), for example, we get

2
C ~ INS, + e22NS, + lr[o/z)'/- + an

L Cod

s i et

Conbiing {15) and (10} wii} similarly Ja.d (0
2
C = NS, + 22N, + -17:[(4/2)'/’+2'/’] 8

The cost of the mized-mode oviverk car. Ik nininized by choosing the best interstation spacing as a
tunction of burstiness. When the traffic is bursty the best < is large. and it becomes smaller when the
] traffic becomes stendier. [

i ) Fig. 14 shows the quality of various one-dimensional networks. The quality of the one- ;
dimensional ALOHA network is (NS, 7'+ 1)/ (2eNS, T+ 1). The curve labelled ‘one-level dedicaied’
shows the quality of the one-level organization suitable to bursty traffic (derived from (14) ) when the
' traffic is bursty, and the ona-level organization suitable to sicady traflic (derived (rom (13) } when the
traffic is steady. The two curves labzlled rixed-mode bursty and mixed-mode cteady were oblained, ;
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from (17) and (18), respectively. 7 he z that minimizes the necessary capacity was chosen for each as a
functicn of NS, T.

It is interest.ng to note that whencver the mixed-mode schemes are better than ALOHA, the
steady scheme, obtained from (18), is better than the bursty one, obtained from (17), That is, the top
level will be steady and shauld be orgunized accordingly.

In writing (18), we assumed that even if a message has only a small distance to go it will go to }
the nearest station and from that station to its destination. But the destination may be within its range,
and it may be able to receive the transmission meant for the station directly. If such sho:t-range
transmissions are received directly at the end of their first hop without retransmission by a station, the
; , system performance will be improved. Both the average number of hops necessary for messages and
1 the amount of contending traffic in the bottom level will decrease.
[

DR

It is evident a priori that this improvement will be important only when the traffic is bursty and
the best interstation spacing is large. We have calculated it explicitly when the distribution of distances
to be travelled v messages is exponential. Fig. 15 shows that this improvement to the mixed-mode
network becomes noticeable only when the traflic is bursty enough to make the ALOHA network better
than the mixed-mode nctwork! In other words, this improvement is irrelevant.

Py

P TR
o~

E ¢ An alternative organization for mixed- node netwerks can be based on the go-forward routing
policy: The first hop of each message wi!l be to the nearest station towards its desiiiation. The message
will then use the top lev.l to get to the last station before its destination, and then again use the bottom
level to reach its destination.

sl

; If all transmissions have the same range it must be at least L in this network, and we shall
assume it is exactly L. Therefore we shall have more contending traffic in the bottom level of a go-
A forward network than bufore. However, there will be less traffic using the top level, and fewer hops
will be necessary there. This alternative organization will be worse than the earlier one when the traffic
/ is steady, and will be better when the traffic is bursty. When the traffic is steady, the interstation dis-
tance wiil be small, and the gain in the top level wili be smail, but doubling the contention in the bot-
; tom level is very costly. When the traffic is bursty, contention is not a serious problem and the intersta-
tion distance is large, so the gain possible in the top level will be significant.

choh b ks e

PR T TR T

Fig. 15 shows the go-forward mixed-mode network ( shown only when it is better than the ear-
lier scheme); and we see that it is better only when both are worse than the ALOHA network. Organ-
izing mixed-mode networks on the go-forward principle is never a good idea. We see here once again
that when a mixed-mode network is better than ALOHA and its interstation spacing is properly chosen, i
its top level is ‘steady’.

o
e ke T ——

In the rest of this chapter when we talk about mixed-mode networks with one dedicated level
we shall always refer to the mixed-mode scheme described by (18), when the best z is chosen as a
function of burstiness in order to minimize the necessary capacity.

Sa i nmaliia

9. Improving the Random Access Part

' Until now we have modelled the terminal-station level by a set of ALOHA systems. But since

' half the traffic in each ALOHA system is concentrated in the station it can be coordinated better than in
- .

t

'

ALOHA. What will a better terminal-station level contribute to the overall performance of the net-
work?

e e e e e
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Let U be the maximum utilization of each ‘*erminal-station system. We shall model the
mixed-mode network obtained with a general terminal-station access scheme by an equation similar to )
(18), where 1/ U is substituted for e. We have divided the interval betwecn 1/e and | into three equal 4
parts, and show in Fig. 16 the quaiity of a mixed-mode network where U, the maximum utilization of 1

1

} each terminal-station system, is .367 (ALGHA), .579, .798 and 1 (M/M/1).

A mixed-mode netwerk built with a better terminal-station access mode will cbviously be
better, but the improvement is not dramatic. Fig. |7 shows the ratio between the quality of a mixed-
moL2 network with a given U and the quality of the mixed-mode network built with ALOHA as the
terminal-station access mode. The curves do not go all the way to the left since they were not drawis
whan the mixed-mode network becomes worse than the one-level ALOHA network.

When comparing the quality of two mixed-mode networks it should be noted that the best
interstation distance as a function of burstiness was chosen separately for each. This gives the mixed-
mode networks an internal adjusting mechanism, and explains why improving the utilization of the
terminal-station part never leads to a comparaocle overall improvement in the necessary capacity. When
using ALOHA for the terminal-station level, we never push it to its maximum utilization, and therefore
N can never, gain a factor of e if we assume an M/M/1 terminal-station part. We have a similar conclu-
f : sion in 14} when discussing pure ALOHA networks. ]
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' Can having more than two levels improve the mixed-raode networks? By how much? We saw
. in [4] tha: a pure ALOHA network with two levels is never better than a one-level ALGHA network.
3 But the argument used there does not apply to mixed-mode networks. A mixed-mode network with

. 3 one dedicated level (the station-station level) and two ALOHA ievels in the terminal-station part can
2 lead to an improvement, but not to a large one. The maximum utilization: of two-level ALOHA is

465 [4]. But even if we had a one-hop terminal station scheme with this maximum utilization it fol-
lows from (18) that it would improve the mixed-mode network by at most 7%. Achieving this utiliza-
Co0 tion hy two hops will, of course, lead io an even smaller improvement.

i ot e X R

Rt e B e

C) 10. More than One Dedicated Leve!?

1 o pp————

More than one leve! in the terminal-station random access part doss 1ot lead to a significant
; improvement. What can we gain by having more than one level in the station-station dedicated part?
i What can we gain by having the optimal number of levels in the station-station dedicated part? The
following is a iower bound 7] on the capacity necessary for the station-station dedivated part wken ihe
traffic is steady and whenr the optimai number of levels is used:

C, = 2NS, + -;-lT[w/z)m(:;/z)]z {19)

e —— e

This lower bound is obtained by using regular hierarchical structures [3] to reduce the dependence of
the second terin of (15} on 1/z, while ignoring the fact that when traffic is not bursty regular structures
would increase the first term of (15). Combining (19) snd (16) we get that the total capacity required
for this mixed-mode network is :

2
C = 2NS, (1+ez) + —lf'(e/Z)ln /2 +2v] (20)

A o e — e A

' Fig. 18 shows ihe quality of a mixed-mode network with thc optimal number of dedicated levels and
3 j with one dedicated levei, as obtained frem (20) and (18) respectively, by choosing the best z for each.
y  Be - . Even though we use an upper bound on the performance of a dedicated station-station part using the

)

'

o

optimal number of levels we dio not gain much over the mixed-raode network that used only one dedi-

. cated level! The reason is familiar by now. Multi-level organizations are especially importart when the

{ ’ network is both bursty and distributed, but this will not occur in our mixed-mode networks, since the
v » stetion-station part will become very distributed (i.c., 1/z will become very large) only when the traffic
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is very steady.

Equation (20) can be generalized and will describe any mixed-rnode network with an optimal-

; } level dedicated station-station part and a one-level random access terminal-station part if U, the max-
_% ‘ imum utilization of the random access scherie, is substituted for 1/e. Fig. 19 shows the ratio between
; 2 the quality obtained with an optimal number of dedicated levels and the quality obtained with one dedi- 1
‘ cated level. This ratio is identically equal to | when the traffic is bursty because /2 is then very small, ]

and the optimal number of levels is then 1. We see from Fig. 19 that if the random access mode is
\ better than ALOHA, introducing more than onc dedicated level will lead to an even smaller improve- ,
@ ment. Only if there is a strong interaction. and the curve with U=.092 can be taken !o represent }
* ALOHA with an interuction ratio equal to 4, will having more than onc dedicaied level lcad to a more

significant improvement. :

:
{ 11. Conclusions
E

ALOHA is good when the traftic is bursty, and dedicated channels are good when the traffic is
x : ~ steady. Mixed-mode systems, with ALOHA in the bottom level and dedicated channels in the top
level, can be much better than either ALOHA or dedicated channels when the traffic is of medium
. burstiness and the ‘arount’ of mixing is properly adjusted. Under reasonably favorable conditions, the
: ) available bandwidth should be shared by the two levels, and not split between them. But even when
conditions are the least favorable, and the channel must be split, the mixed-mode systems are surpris- '
ingly good. }

bt cadalath & e

e Mixed-mode systems in general, and mixed-mode networks in particular, show a ceriain robust-
' ;‘ ness. By the freedom te choonse the right mix, the system gains an internal adjustment mechanism, and
; ' will never push any of its tivo parts until it is very bad. That is, the ALOHA part will never be heavily
] - loaded and there will never be many lightly utilized dedicated channels. Because of this robustness it is
; ) harder to improve mix-mode networks. Changing the bottom level of a mixed-mode network from ;

ALOHA to a better rundom access scheme Icads to only a relatively small overall improvement. Intro- 1
2 ducing more dedicated levels in a mixed-mode network likewise feads to only a modest overall .

improvement. i
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